BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 24600863)

  • 21. Arsenite binding to sulfhydryl groups in the absence and presence of ferrihydrite: a model study.
    Hoffmann M; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Apr; 48(7):3822-31. PubMed ID: 24564801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoinduced oxidation of arsenite to arsenate in the presence of goethite.
    Bhandari N; Reeder RJ; Strongin DR
    Environ Sci Technol; 2012 Aug; 46(15):8044-51. PubMed ID: 22703473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature.
    Das S; Hendry MJ; Essilfie-Dughan J
    Environ Sci Technol; 2011 Jan; 45(1):268-75. PubMed ID: 21128633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorption mechanism of arsenate by zirconyl-functionalized activated carbon.
    Schmidt GT; Vlasova N; Zuzaan D; Kersten M; Daus B
    J Colloid Interface Sci; 2008 Jan; 317(1):228-34. PubMed ID: 17927995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel synergistic hydrous iron-nickel-manganese (HINM) trimetal oxide for hazardous arsenite removal.
    Nasir AM; Goh PS; Ismail AF
    Chemosphere; 2018 Jun; 200():504-512. PubMed ID: 29501887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Competitive sorption of carbonate and arsenic to hematite: combined ATR-FTIR and batch experiments.
    Brechbühl Y; Christl I; Elzinga EJ; Kretzschmar R
    J Colloid Interface Sci; 2012 Jul; 377(1):313-21. PubMed ID: 22494686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils.
    Vithanage M; Rajapaksha AU; Dou X; Bolan NS; Yang JE; Ok YS
    J Colloid Interface Sci; 2013 Sep; 406():217-24. PubMed ID: 23791229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of uranyl surface complexes on ferrihydrite: Advanced EXAFS data analysis and CD-MUSIC modeling.
    Rossberg A; Ulrich KU; Weiss S; Tsushima S; Hiemstra T; Scheinostt AC
    Environ Sci Technol; 2009 Mar; 43(5):1400-6. PubMed ID: 19350910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent.
    Ren Z; Zhang G; Chen JP
    J Colloid Interface Sci; 2011 Jun; 358(1):230-7. PubMed ID: 21440898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic and thermodynamic interpretations of zinc sorption onto ferrihydrite.
    Trivedi P; Dyer JA; Sparks DL; Pandya K
    J Colloid Interface Sci; 2004 Feb; 270(1):77-85. PubMed ID: 14693137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo efficacy of ferrihydrite as an enterosorbent for arsenic: short-term evaluation in rodents.
    Taylor JF; Robinson A; Mitchell NJ; Marroquin-Cardona A; Johnson N; Elmore SE; Romoser AA; Phillips TD
    J Toxicol Environ Health A; 2013; 76(3):167-75. PubMed ID: 23356646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selenium(IV) uptake by maghemite (γ-Fe2O3).
    Jordan N; Ritter A; Scheinost AC; Weiss S; Schild D; Hübner R
    Environ Sci Technol; 2014; 48(3):1665-74. PubMed ID: 24422437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced arsenite removal from water by Ti(SO4)2 coagulation.
    Sun Y; Zhou G; Xiong X; Guan X; Li L; Bao H
    Water Res; 2013 Sep; 47(13):4340-8. PubMed ID: 23764585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface complexation modeling of zinc sorption onto ferrihydrite.
    Dyer JA; Trivedi P; Scrivner NC; Sparks DL
    J Colloid Interface Sci; 2004 Feb; 270(1):56-65. PubMed ID: 14693135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An EXAFS study on the adsorption structure of phenyl-substituted organoarsenic compounds on ferrihydrite.
    Tanaka M; Togo YS; Yamaguchi N; Takahashi Y
    J Colloid Interface Sci; 2014 Feb; 415():13-7. PubMed ID: 24267324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Arsenite removal performance by modified GAC].
    Liu ZZ; Deng HP; Zhan J; Wang XP
    Huan Jing Ke Xue; 2009 Mar; 30(3):780-6. PubMed ID: 19432328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioaccessibility of lead sequestered to corundum and ferrihydrite in a simulated gastrointestinal system.
    Beak DG; Basta NT; Scheckel KG; Traina SJ
    J Environ Qual; 2006; 35(6):2075-83. PubMed ID: 17071876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption.
    Yu L; Peng X; Ni F; Li J; Wang D; Luan Z
    J Hazard Mater; 2013 Feb; 246-247():10-7. PubMed ID: 23276789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced removal performance of arsenate and arsenite by magnetic graphene oxide with high iron oxide loading.
    Yu F; Sun S; Ma J; Han S
    Phys Chem Chem Phys; 2015 Feb; 17(6):4388-97. PubMed ID: 25578030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sorption mechanisms of chromate with coprecipitated ferrihydrite in aqueous solution.
    Mamun AA; Morita M; Matsuoka M; Tokoro C
    J Hazard Mater; 2017 Jul; 334():142-149. PubMed ID: 28407541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.