These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24600877)

  • 21. A new combined green method for 2-Chlorophenol removal using cross-linked Brassica rapa peroxidase in silicone oil.
    Tandjaoui N; Abouseoud M; Couvert A; Amrane A; Tassist A
    Chemosphere; 2016 Apr; 148():55-60. PubMed ID: 26802263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of cyclic volatile methylsiloxanes in biota with a purge and trap method.
    Kierkegaard A; Adolfsson-Erici M; McLachlan MS
    Anal Chem; 2010 Nov; 82(22):9573-8. PubMed ID: 20954717
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New Carvone-Based Deep Eutectic Solvents for Siloxanes Capture from Biogas.
    Makoś-Chełstowska P; Słupek E; Kramarz A; Gębicki J
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The elimination of siloxanes from the biogas of a wastewater treatment plant by means of an adsorption process.
    Trapote A; García M; Prats D
    Water Sci Technol; 2016 Dec; 74(12):2927-2934. PubMed ID: 27997402
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emergence and fate of cyclic volatile polydimethylsiloxanes (D4, D5) in municipal waste streams: release mechanisms, partitioning and persistence in air, water, soil and sediments.
    Surita SC; Tansel B
    Sci Total Environ; 2014 Jan; 468-469():46-52. PubMed ID: 24012894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of Siloxanes from Model Biogas by Means of Deep Eutectic Solvents in Absorption Process.
    Słupek E; Makoś-Chełstowska P; Gębicki J
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33418968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative analysis of volatile methylsiloxanes in waste-to-energy landfill biogases using direct APCI-MS/MS.
    Badjagbo K; Héroux M; Alaee M; Moore S; Sauvé S
    Environ Sci Technol; 2010 Jan; 44(2):600-5. PubMed ID: 20017505
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of toluene on siloxane biodegradation and microbial communities in biofilters.
    González-Cortés JJ; Lamprea-Pineda PA; Valle A; Ramírez M; Van Langenhove H; Demeestere K; Walgraeve C
    Waste Manag; 2024 Sep; 186():119-129. PubMed ID: 38875913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biogas upgrading: optimal activated carbon properties for siloxane removal.
    Cabrera-Codony A; Montes-Morán MA; Sánchez-Polo M; Martín MJ; Gonzalez-Olmos R
    Environ Sci Technol; 2014 Jun; 48(12):7187-95. PubMed ID: 24837651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extraction of octamethylcyclotetrasiloxane and its metabolites from biological matrices.
    Varaprath S; Salyers KL; Plotzke KP; Nanavati S
    Anal Biochem; 1998 Feb; 256(1):14-22. PubMed ID: 9466793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and characterization of a novel thermophilic-organic solvent stable lipase from Acinetobacter baylyi.
    Uttatree S; Winayanuwattikun P; Charoenpanich J
    Appl Biochem Biotechnol; 2010 Nov; 162(5):1362-76. PubMed ID: 20177822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Siloxanes removal from biogas by a lab-scale biotrickling filter inoculated with Pseudomonas aeruginosa S240.
    Li Y; Zhang W; Xu J
    J Hazard Mater; 2014 Jun; 275():175-84. PubMed ID: 24857900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic release of siloxanes in the form of biogas from simulated municipal-solid-waste landfill and the corresponding driving mechanism.
    Kong Q; He J; Chen H; Zhou D; Yu C; Zhang Z; Yao J; Shen D
    Waste Manag; 2024 Jul; 184():101-108. PubMed ID: 38810395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atmospheric Chemistry of Volatile Methyl Siloxanes: Kinetics and Products of Oxidation by OH Radicals and Cl Atoms.
    Alton MW; Browne EC
    Environ Sci Technol; 2020 May; 54(10):5992-5999. PubMed ID: 32339458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of adsorbents for H2S and D4 removal for biogas conversion in a solid oxide fuel cell.
    Sigot L; Ducom G; Benadda B; Labouré C
    Environ Technol; 2016; 37(1):86-95. PubMed ID: 26183696
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Siloxanes in Biogas: Approaches of Sampling Procedure and GC-MS Method Determination.
    Piechota G
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33808478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Junge relationships in measurement data for cyclic siloxanes in air.
    MacLeod M; Kierkegaard A; Genualdi S; Harner T; Scheringer M
    Chemosphere; 2013 Oct; 93(5):830-4. PubMed ID: 23177712
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The measurement of conformational stability of proteins adsorbed on siloxanes.
    Prokopowicz M; Banecki B; Lukasiak J; Przyjazny A
    J Biomater Sci Polym Ed; 2003; 14(2):103-18. PubMed ID: 12661663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into siloxane removal from biogas in biotrickling filters via process mapping-based analysis.
    Soreanu G
    Chemosphere; 2016 Mar; 146():539-46. PubMed ID: 26745382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidation of siloxanes during biogas combustion and nanotoxicity of Si-based particles released to the atmosphere.
    Tansel B; Surita SC
    Environ Toxicol Pharmacol; 2014 Jan; 37(1):166-73. PubMed ID: 24355797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.