These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 24601020)

  • 21. Effect of solute on the nucleation and propagation of ice.
    Charoenrein S; Goddard M; Reid DS
    Adv Exp Med Biol; 1991; 302():191-8. PubMed ID: 1746327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.
    Braham RR
    Science; 1959 Jan; 129(3342):123-9. PubMed ID: 17745322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of chemical aging on the ice nucleation activity of soot and polycyclic aromatic hydrocarbon aerosols.
    Brooks SD; Suter K; Olivarez L
    J Phys Chem A; 2014 Oct; 118(43):10036-47. PubMed ID: 25280086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and validation of a new cloud simulation experiment for lab-based aerosol-cloud studies.
    Vogel F; Lacher L; Nadolny J; Saathoff H; Leisner T; Möhler O
    Rev Sci Instrum; 2022 Sep; 93(9):095106. PubMed ID: 36182527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Freezing activities of flavonoids in solutions containing different ice nucleators.
    Kuwabara C; Wang D; Kasuga J; Fukushi Y; Arakawa K; Koyama T; Inada T; Fujikawa S
    Cryobiology; 2012 Jun; 64(3):279-85. PubMed ID: 22406212
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf.
    Searles JA; Carpenter JF; Randolph TW
    J Pharm Sci; 2001 Jul; 90(7):860-71. PubMed ID: 11458335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pore condensation and freezing is responsible for ice formation below water saturation for porous particles.
    David RO; Marcolli C; Fahrni J; Qiu Y; Perez Sirkin YA; Molinero V; Mahrt F; Brühwiler D; Lohmann U; Kanji ZA
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8184-8189. PubMed ID: 30948638
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty.
    Riechers B; Wittbracht F; Hütten A; Koop T
    Phys Chem Chem Phys; 2013 Apr; 15(16):5873-87. PubMed ID: 23486888
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomass combustion produces ice-active minerals in biomass-burning aerosol and bottom ash.
    Jahn LG; Polen MJ; Jahl LG; Brubaker TA; Somers J; Sullivan RC
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21928-21937. PubMed ID: 32839314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of Organic Hydrocarbons in Atmospheric Ice Formation via Contact Freezing.
    Collier KN; Brooks SD
    J Phys Chem A; 2016 Dec; 120(51):10169-10180. PubMed ID: 27966972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of pH on Ice Nucleation by Kaolinite: Experiments and Molecular Simulations.
    Ren Y; Bertram AK; Patey GN
    J Phys Chem A; 2022 Dec; 126(49):9227-9243. PubMed ID: 36450006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Does liquid-liquid phase separation impact ice nucleation in mixed polyethylene glycol and ammonium sulfate droplets?
    Yao Y; Alpert PA; Zuend A; Wang B
    Phys Chem Chem Phys; 2022 Dec; 25(1):80-95. PubMed ID: 36281770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stochastic nucleation processes and substrate abundance explain time-dependent freezing in supercooled droplets.
    Knopf DA; Alpert PA; Zipori A; Reicher N; Rudich Y
    NPJ Clim Atmos Sci; 2020 Feb; 3(1):2. PubMed ID: 32754650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TinyLev acoustically levitated water: Direct observation of collective, inter-droplet effects through morphological and thermal analysis of multiple droplets.
    McElligott A; Guerra A; Wood MJ; Rey AD; Kietzig AM; Servio P
    J Colloid Interface Sci; 2022 Aug; 619():84-95. PubMed ID: 35378478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of solute crystallisation in aqueous H(+)-NH(4)(+)-SO4(2-)-H2O droplets.
    Murray BJ; Bertram AK
    Phys Chem Chem Phys; 2008 Jun; 10(22):3287-301. PubMed ID: 18500406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The formation of cubic ice under conditions relevant to Earth's atmosphere.
    Murray BJ; Knopf DA; Bertram AK
    Nature; 2005 Mar; 434(7030):202-5. PubMed ID: 15758996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ice nucleation onto Arizona test dust at cirrus temperatures: effect of temperature and aerosol size on onset relative humidity.
    Kanji ZA; Abbatt JP
    J Phys Chem A; 2010 Jan; 114(2):935-41. PubMed ID: 19888714
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zero-sized effect of nano-particles and inverse homogeneous nucleation. Principles of freezing and antifreeze.
    Liu XY; Du N
    J Biol Chem; 2004 Feb; 279(7):6124-31. PubMed ID: 14602714
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical analysis of crystallization by homogeneous nucleation of water droplets.
    Tanaka KK; Kimura Y
    Phys Chem Chem Phys; 2019 Jan; 21(5):2410-2418. PubMed ID: 30649109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental investigation of the homogeneous freezing of aqueous ammonium sulfate droplets.
    Larson BH; Swanson BD
    J Phys Chem A; 2006 Feb; 110(5):1907-16. PubMed ID: 16451024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.