These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24601486)

  • 1. Three-dimensional triple hierarchy formed by self-assembly of wax crystals on CuO nanowires for nonwettable surfaces.
    Lee JY; Pechook S; Jeon DJ; Pokroy B; Yeo JS
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4927-34. PubMed ID: 24601486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multilevel hierarchy of fluorinated wax on CuO nanowires for superoleophobic surfaces.
    Lee JY; Pechook S; Pokroy B; Yeo JS
    Langmuir; 2014 Dec; 30(51):15568-73. PubMed ID: 25469548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lotus-like biomimetic hierarchical structures developed by the self-assembly of tubular plant waxes.
    Bhushan B; Jung YC; Niemietz A; Koch K
    Langmuir; 2009 Feb; 25(3):1659-66. PubMed ID: 19132938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates.
    Zhang Qb; Xu D; Hung TF; Zhang K
    Nanotechnology; 2013 Feb; 24(6):065602. PubMed ID: 23340193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ZnO/CuO hetero-hierarchical nanotrees array: hydrothermal preparation and self-cleaning properties.
    Guo Z; Chen X; Li J; Liu JH; Huang XJ
    Langmuir; 2011 May; 27(10):6193-200. PubMed ID: 21491849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guided transport of water droplets on superhydrophobic-hydrophilic patterned Si nanowires.
    Seo J; Lee S; Lee J; Lee T
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4722-9. PubMed ID: 22091585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analysis of wheat wax (Triticum aestivum, c.v. 'Naturastar' L.): from the molecular level to three dimensional crystals.
    Koch K; Barthlott W; Koch S; Hommes A; Wandelt K; Mamdouh W; De-Feyter S; Broekmann P
    Planta; 2006 Jan; 223(2):258-70. PubMed ID: 16133211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly.
    Koch K; Ensikat HJ
    Micron; 2008 Oct; 39(7):759-72. PubMed ID: 18187332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-cleaning efficiency of artificial superhydrophobic surfaces.
    Bhushan B; Jung YC; Koch K
    Langmuir; 2009 Mar; 25(5):3240-8. PubMed ID: 19239196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of plant waxes as templates for micro- and nanopatterning of surfaces.
    Koch K; Dommisse A; Barthlott W; Gorb SN
    Acta Biomater; 2007 Nov; 3(6):905-9. PubMed ID: 17656166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness.
    Scholz I; Bückins M; Dolge L; Erlinghagen T; Weth A; Hischen F; Mayer J; Hoffmann S; Riederer M; Riedel M; Baumgartner W
    J Exp Biol; 2010 Apr; 213(Pt 7):1115-25. PubMed ID: 20228348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces.
    Dawood MK; Zheng H; Liew TH; Leong KC; Foo YL; Rajagopalan R; Khan SA; Choi WK
    Langmuir; 2011 Apr; 27(7):4126-33. PubMed ID: 21355585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires.
    Peng S; Tian D; Yang X; Deng W
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4831-41. PubMed ID: 24593862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insect attachment on crystalline bioinspired wax surfaces formed by alkanes of varying chain lengths.
    Gorb E; Böhm S; Jacky N; Maier LP; Dening K; Pechook S; Pokroy B; Gorb S
    Beilstein J Nanotechnol; 2014; 5():1031-41. PubMed ID: 25161838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.
    Shi W; Chopra N
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5590-607. PubMed ID: 22985284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly and hierarchical patterning of aligned organic nanowire arrays by solvent evaporation on substrates with patterned wettability.
    Bao RR; Zhang CY; Zhang XJ; Ou XM; Lee CS; Jie JS; Zhang XH
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5757-62. PubMed ID: 23742204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays.
    Li Y; Huang XJ; Heo SH; Li CC; Choi YK; Cai WP; Cho SO
    Langmuir; 2007 Feb; 23(4):2169-74. PubMed ID: 17279709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wettability control and water droplet dynamics on SiC-SiO2 core-shell nanowires.
    Kwak G; Lee M; Senthil K; Yong K
    Langmuir; 2010 Jul; 26(14):12273-7. PubMed ID: 20509642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.
    Cortese B; D'Amone S; Manca M; Viola I; Cingolani R; Gigli G
    Langmuir; 2008 Mar; 24(6):2712-8. PubMed ID: 18217778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.