These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 24601549)

  • 1. The reaction of arsenite with proteins relies on solution conditions.
    Zhao L; Wang Z; Xi Z; Xu D; Chen S; Liu Y
    Inorg Chem; 2014 Mar; 53(6):3054-61. PubMed ID: 24601549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selectivity of arsenite interaction with zinc finger proteins.
    Zhao L; Chen S; Jia L; Shu S; Zhu P; Liu Y
    Metallomics; 2012 Aug; 4(9):988-94. PubMed ID: 22847370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of arsenite with a zinc finger CCHC peptide: evidence for formation of an As-Zn-peptide mixed complex.
    Demicheli C; Frézard F; Pereira FA; Santos DM; Mangrum JB; Farrell NP
    J Inorg Biochem; 2011 Dec; 105(12):1753-8. PubMed ID: 22099473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monomethylarsonous acid destroys a tetrathiolate zinc finger much more efficiently than inorganic arsenite: mechanistic considerations and consequences for DNA repair inhibition.
    Piatek K; Schwerdtle T; Hartwig A; Bal W
    Chem Res Toxicol; 2008 Mar; 21(3):600-6. PubMed ID: 18220366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of the As(III)-thiol interaction: arsenite and monomethylarsenite complexes with glutathione, dihydrolipoic acid, and other thiol ligands.
    Spuches AM; Kruszyna HG; Rich AM; Wilcox DE
    Inorg Chem; 2005 Apr; 44(8):2964-72. PubMed ID: 15819584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential binding of monomethylarsonous acid compared to arsenite and arsenic trioxide with zinc finger peptides and proteins.
    Zhou X; Sun X; Mobarak C; Gandolfi AJ; Burchiel SW; Hudson LG; Liu KJ
    Chem Res Toxicol; 2014 Apr; 27(4):690-8. PubMed ID: 24611629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of configuration of arsenite-glutathione complexes using ECSTM.
    Han MJ; Meng X; Lippincott L
    Toxicol Lett; 2007 Dec; 175(1-3):57-63. PubMed ID: 17980976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of glutathione depletion and metallothionein gene expression on arsenic-induced cytotoxicity and c-myc expression in vitro.
    Shimizu M; Hochadel JF; Fulmer BA; Waalkes MP
    Toxicol Sci; 1998 Oct; 45(2):204-11. PubMed ID: 9848127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer of arsenite from glutathione to dithiols: a model of interaction.
    Delnomdedieu M; Basti MM; Otvos JD; Thomas DJ
    Chem Res Toxicol; 1993; 6(5):598-602. PubMed ID: 8292735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the reactivity between a ruthenium hexacationic prism and biological ligands.
    Paul LE; Therrien B; Furrer J
    Inorg Chem; 2012 Jan; 51(2):1057-67. PubMed ID: 22221272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass spectrometric evidence for different complexes of peptides and proteins with arsenic(III), arsenic(V), copper(II), and zinc(II) species.
    Schmidt AC; Koppelt J; Neustadt M; Otto M
    Rapid Commun Mass Spectrom; 2007; 21(2):153-63. PubMed ID: 17154358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19.
    Hayakawa T; Kobayashi Y; Cui X; Hirano S
    Arch Toxicol; 2005 Apr; 79(4):183-91. PubMed ID: 15526190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of intercalated iron(III) nanoparticles and oxidative adsorption of arsenite on them monitored by x-ray absorption fine structure combined with fluorescence spectrometry.
    Izumi Y; Masih D; Aika K; Seida Y
    J Phys Chem B; 2005 Mar; 109(8):3227-32. PubMed ID: 16851345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination chemistry of the antitumor metallocene molybdocene dichloride with biological ligands.
    Waern JB; Harding MM
    Inorg Chem; 2004 Jan; 43(1):206-13. PubMed ID: 14704069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study of the arsenate reducted by common reducing agents].
    Fu J; Xue P; Jin Y; He M
    Wei Sheng Yan Jiu; 2008 Jan; 37(1):19-21. PubMed ID: 18421855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium characterization of the As(III)-cysteine and the As(III)-glutathione systems in aqueous solution.
    Rey NA; Howarth OW; Pereira-Maia EC
    J Inorg Biochem; 2004 Jun; 98(6):1151-9. PubMed ID: 15149827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and theoretical characterization of arsenite in water: insights into the coordination environment of As-O.
    Ramírez-Solís A; Mukopadhyay R; Rosen BP; Stemmler TL
    Inorg Chem; 2004 May; 43(9):2954-9. PubMed ID: 15106984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosomal, in silico and in vitro expression analysis of cardiovascular-based genes encoding zinc finger proteins.
    Dai KS; Liew CC
    J Mol Cell Cardiol; 1999 Sep; 31(9):1749-69. PubMed ID: 10471358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic sorption onto laterite iron concretions: temperature effect.
    Partey F; Norman D; Ndur S; Nartey R
    J Colloid Interface Sci; 2008 May; 321(2):493-500. PubMed ID: 18346752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel polynuclear platinum adducts detected during the reactions of [Pt(Met-S,N)Cl2] with gamma-glutathione and L-cysteine.
    Liu Q; Wei H; Lin J; Zhu L; Guo Z
    J Inorg Biochem; 2004 May; 98(5):702-12. PubMed ID: 15134915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.