These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 24601558)
1. Quantum-dot-induced self-assembly of cricoid protein for light harvesting. Miao L; Han J; Zhang H; Zhao L; Si C; Zhang X; Hou C; Luo Q; Xu J; Liu J ACS Nano; 2014 Apr; 8(4):3743-51. PubMed ID: 24601558 [TBL] [Abstract][Full Text] [Related]
2. Enzyme-Triggered Defined Protein Nanoarrays: Efficient Light-Harvesting Systems to Mimic Chloroplasts. Zhao L; Zou H; Zhang H; Sun H; Wang T; Pan T; Li X; Bai Y; Qiao S; Luo Q; Xu J; Hou C; Liu J ACS Nano; 2017 Jan; 11(1):938-945. PubMed ID: 28051843 [TBL] [Abstract][Full Text] [Related]
4. Micelle-Induced Self-Assembling Protein Nanowires: Versatile Supramolecular Scaffolds for Designing the Light-Harvesting System. Sun H; Zhang X; Miao L; Zhao L; Luo Q; Xu J; Liu J ACS Nano; 2016 Jan; 10(1):421-8. PubMed ID: 26634314 [TBL] [Abstract][Full Text] [Related]
5. Versatile self-assembly of water-soluble thiol-capped CdTe quantum dots: external destabilization and internal stability of colloidal QDs. Deng D; Qu L; Li Y; Gu Y Langmuir; 2013 Aug; 29(34):10907-14. PubMed ID: 23944250 [TBL] [Abstract][Full Text] [Related]
6. A facile strategy to fabricate thermoresponsive polymer functionalized CdTe/ZnS quantum dots: assemblies and optical properties. Liu B; Tong C; Feng L; Wang C; He Y; Lü C Macromol Rapid Commun; 2014 Jan; 35(1):77-83. PubMed ID: 24285535 [TBL] [Abstract][Full Text] [Related]
7. Self-assembly of cricoid proteins induced by "soft nanoparticles": an approach to design multienzyme-cooperative antioxidative systems. Sun H; Miao L; Li J; Fu S; An G; Si C; Dong Z; Luo Q; Yu S; Xu J; Liu J ACS Nano; 2015 May; 9(5):5461-9. PubMed ID: 25952366 [TBL] [Abstract][Full Text] [Related]
8. Efficient fluorescence resonance energy transfer between oppositely charged CdTe quantum dots and gold nanoparticles for turn-on fluorescence detection of glyphosate. Guo J; Zhang Y; Luo Y; Shen F; Sun C Talanta; 2014 Jul; 125():385-92. PubMed ID: 24840461 [TBL] [Abstract][Full Text] [Related]
10. [Fluorescence resonance energy transfer between gentamycin and water-soluble CdTe QDs]. Li JG; Zhu K; Xu F; Jiang HY; Ding SY Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Nov; 29(11):3070-4. PubMed ID: 20101988 [TBL] [Abstract][Full Text] [Related]
11. Tuning of the fluorescence wavelength of CdTe quantum dots with 2 nm resolution by size-selective photoetching. Uematsu T; Kitajima H; Kohma T; Torimoto T; Tachibana Y; Kuwabata S Nanotechnology; 2009 May; 20(21):215302. PubMed ID: 19423928 [TBL] [Abstract][Full Text] [Related]
12. Effect of CdTe quantum dots size on the conformational changes of human serum albumin: results of spectroscopy and isothermal titration calorimetry. Yang B; Liu R; Hao X; Wu Y; Du J Biol Trace Elem Res; 2013 Oct; 155(1):150-8. PubMed ID: 23904329 [TBL] [Abstract][Full Text] [Related]
13. Quantum dot clusters as self-assembled antennae with phycocyanine and phycobilisomes as energy acceptors. Grzyb J; Walczewska-Szewc K; Sławski J; Trojnar M Phys Chem Chem Phys; 2021 Nov; 23(42):24505-24517. PubMed ID: 34700331 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic studies on the interactions between CdTe quantum dots coated with different ligands and human serum albumin. Lai L; Lin C; Xu ZQ; Han XL; Tian FF; Mei P; Li DW; Ge YS; Jiang FL; Zhang YZ; Liu Y Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():366-76. PubMed ID: 22797377 [TBL] [Abstract][Full Text] [Related]
15. Ultrasensitive Pb2+ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. Wang X; Guo X Analyst; 2009 Jul; 134(7):1348-54. PubMed ID: 19562200 [TBL] [Abstract][Full Text] [Related]
16. Photoabsorption and resonance energy transfer phenomenon in CdTe-protein bioconjugates: an insight into QD-biomolecular interactions. Vinayaka AC; Thakur MS Bioconjug Chem; 2011 May; 22(5):968-75. PubMed ID: 21452896 [TBL] [Abstract][Full Text] [Related]
17. Highly luminescent CdTe/CdS/ZnO core/shell/shell quantum dots fabricated using an aqueous strategy. Zhimin Yuan ; Wang J; Yang P Luminescence; 2013; 28(2):169-75. PubMed ID: 22511616 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence immunoassay of octachlorostyrene based on Förster resonance energy transfer between CdTe quantum dots and rhodamine B. Wang X; Sheng P; Zhou L; Tong X; Shi L; Cai Q Biosens Bioelectron; 2014 Oct; 60():52-6. PubMed ID: 24768862 [TBL] [Abstract][Full Text] [Related]
19. Non-covalent conjugation of CdTe QDs with lysozyme binding DNA for fluorescent sensing of lysozyme in complex biological sample. Li S; Gao Z; Shao N Talanta; 2014 Nov; 129():86-92. PubMed ID: 25127568 [TBL] [Abstract][Full Text] [Related]
20. Photodynamic therapy potential of thiol-stabilized CdTe quantum dot-group 3A phthalocyanine conjugates (QD-Pc). Tekdaş DA; Durmuş M; Yanık H; Ahsen V Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():313-20. PubMed ID: 22484269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]