These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 24602769)
1. Structure, mechanism, and enantioselectivity shifting of lipase LipK107 with a simple way. Zhang L; Gao B; Yuan Z; He X; Yuan YA; Zhang JZ; Wei D Biochim Biophys Acta; 2014 Jul; 1844(7):1183-92. PubMed ID: 24602769 [TBL] [Abstract][Full Text] [Related]
2. Template-based modeling of a psychrophilic lipase: conformational changes, novel structural features and its application in predicting the enantioselectivity of lipase catalyzed transesterification of secondary alcohols. Xu T; Gao B; Zhang L; Lin J; Wang X; Wei D Biochim Biophys Acta; 2010 Dec; 1804(12):2183-90. PubMed ID: 20828637 [TBL] [Abstract][Full Text] [Related]
3. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204 [TBL] [Abstract][Full Text] [Related]
4. Control of lipase enantioselectivity by engineering the substrate binding site and access channel. Lafaquière V; Barbe S; Puech-Guenot S; Guieysse D; Cortés J; Monsan P; Siméon T; André I; Remaud-Siméon M Chembiochem; 2009 Nov; 10(17):2760-71. PubMed ID: 19816890 [TBL] [Abstract][Full Text] [Related]
5. Learning from directed evolution: theoretical investigations into cooperative mutations in lipase enantioselectivity. Bocola M; Otte N; Jaeger KE; Reetz MT; Thiel W Chembiochem; 2004 Feb; 5(2):214-23. PubMed ID: 14760743 [TBL] [Abstract][Full Text] [Related]
6. Integrating In Silico and In vitro approaches to dissect the stereoselectivity of Bacillus subtilis lipase A toward ketoprofen vinyl ester. Ni Z; Zhou P; Jin X; Lin XF Chem Biol Drug Des; 2011 Aug; 78(2):301-8. PubMed ID: 21477088 [TBL] [Abstract][Full Text] [Related]
7. Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site. Bordes F; Cambon E; Dossat-Létisse V; André I; Croux C; Nicaud JM; Marty A Chembiochem; 2009 Jul; 10(10):1705-13. PubMed ID: 19504508 [TBL] [Abstract][Full Text] [Related]
8. Elucidating structure-mechanism relationships in lipases: prospects for predicting and engineering catalytic properties. Kazlauskas RJ Trends Biotechnol; 1994 Nov; 12(11):464-72. PubMed ID: 7765546 [TBL] [Abstract][Full Text] [Related]
9. Improved enantioselectivity of a lipase by rational protein engineering. Rotticci D; Rotticci-Mulder JC; Denman S; Norin T; Hult K Chembiochem; 2001 Oct; 2(10):766-70. PubMed ID: 11948859 [TBL] [Abstract][Full Text] [Related]
10. Loop grafting of Bacillus subtilis lipase A: inversion of enantioselectivity. Boersma YL; Pijning T; Bosma MS; van der Sloot AM; Godinho LF; Dröge MJ; Winter RT; van Pouderoyen G; Dijkstra BW; Quax WJ Chem Biol; 2008 Aug; 15(8):782-9. PubMed ID: 18721749 [TBL] [Abstract][Full Text] [Related]
11. Structural basis for enantiomer binding and separation of a common beta-blocker: crystal structure of cellobiohydrolase Cel7A with bound (S)-propranolol at 1.9 A resolution. Ståhlberg J; Henriksson H; Divne C; Isaksson R; Pettersson G; Johansson G; Jones TA J Mol Biol; 2001 Jan; 305(1):79-93. PubMed ID: 11114249 [TBL] [Abstract][Full Text] [Related]
12. Rationally engineered double substituted variants of Yarrowia lipolytica lipase with enhanced activity coupled with highly inverted enantioselectivity towards 2-bromo phenyl acetic acid esters. Cambon E; Piamtongkam R; Bordes F; Duquesne S; André I; Marty A Biotechnol Bioeng; 2010 Aug; 106(6):852-9. PubMed ID: 20506522 [TBL] [Abstract][Full Text] [Related]
13. A method to rationally increase protein stability based on the charge-charge interaction, with application to lipase LipK107. Zhang L; Tang X; Cui D; Yao Z; Gao B; Jiang S; Yin B; Yuan YA; Wei D Protein Sci; 2014 Jan; 23(1):110-6. PubMed ID: 24353171 [TBL] [Abstract][Full Text] [Related]
14. Biochemical profiling in silico--predicting substrate specificities of large enzyme families. Tyagi S; Pleiss J J Biotechnol; 2006 Jun; 124(1):108-16. PubMed ID: 16519956 [TBL] [Abstract][Full Text] [Related]
15. Mutant lipase-catalyzed kinetic resolution of bulky phenyl alkyl sec-alcohols: a thermodynamic analysis of enantioselectivity. Vallin M; Syrén PO; Hult K Chembiochem; 2010 Feb; 11(3):411-6. PubMed ID: 20049759 [TBL] [Abstract][Full Text] [Related]
16. Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions. Haeffner F; Norin T; Hult K Biophys J; 1998 Mar; 74(3):1251-62. PubMed ID: 9512023 [TBL] [Abstract][Full Text] [Related]
17. Malassezia globosa MgMDL2 lipase: Crystal structure and rational modification of substrate specificity. Lan D; Xu H; Xu J; Dubin G; Liu J; Iqbal Khan F; Wang Y Biochem Biophys Res Commun; 2017 Jun; 488(2):259-265. PubMed ID: 28433636 [TBL] [Abstract][Full Text] [Related]
18. Structural insights into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97A resolution. Mancheño JM; Pernas MA; Martínez MJ; Ochoa B; Rúa ML; Hermoso JA J Mol Biol; 2003 Oct; 332(5):1059-69. PubMed ID: 14499609 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the catalytic mechanism of a fungal lipase using computer-aided design and structural mutants. Beer HD; Wohlfahrt G; McCarthy JE; Schomburg D; Schmid RD Protein Eng; 1996 Jun; 9(6):507-17. PubMed ID: 8862551 [TBL] [Abstract][Full Text] [Related]
20. Inverting enantioselectivity of Burkholderia cepacia KWI-56 lipase by combinatorial mutation and high-throughput screening using single-molecule PCR and in vitro expression. Koga Y; Kato K; Nakano H; Yamane T J Mol Biol; 2003 Aug; 331(3):585-92. PubMed ID: 12899830 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]