These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 24602840)

  • 1. Discovering anomalous hybridization kinetics on DNA nanostructures using single-molecule fluorescence microscopy.
    Johnson-Buck A; Walter NG
    Methods; 2014 May; 67(2):177-84. PubMed ID: 24602840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFM Imaging of Hybridization Chain Reaction Mediated Signal Transmission between Two DNA Origami Structures.
    Helmig S; Gothelf KV
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13633-13636. PubMed ID: 28868629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing DNA nanotechnology using single-molecule fluorescence.
    Tsukanov R; Tomov TE; Liber M; Berger Y; Nir E
    Acc Chem Res; 2014 Jun; 47(6):1789-98. PubMed ID: 24828396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybridization with nanostructures of single-stranded DNA.
    Liu M; Liu GY
    Langmuir; 2005 Mar; 21(5):1972-8. PubMed ID: 15723497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural dynamics of nucleic acids by single-molecule FRET.
    Krüger AC; Hildebrandt LL; Kragh SL; Birkedal V
    Methods Cell Biol; 2013; 113():1-37. PubMed ID: 23317895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competitive Assays of Label-Free DNA Hybridization with Single-Molecule Fluorescence Imaging Detection.
    Peterson EM; Manhart MW; Harris JM
    Anal Chem; 2016 Jun; 88(12):6410-7. PubMed ID: 27203690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-PAINT Super-Resolution Imaging for Nucleic Acid Nanostructures.
    Dai M
    Methods Mol Biol; 2017; 1500():185-202. PubMed ID: 27813009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Molecule Assessment of DNA Hybridization Kinetics on Dye-Loaded DNA Nanostructures.
    Li C; Xie Y; Cheng X; Xu L; Yao G; Li Q; Shen J; Fan C; Li M
    Small; 2024 Oct; 20(40):e2402870. PubMed ID: 38844986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of DNA nanostructures with repetitive binding motifs by rolling circle amplification.
    Reiss E; Hölzel R; Bier FF
    Methods Mol Biol; 2011; 749():151-68. PubMed ID: 21674371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA origami as a nanoscopic ruler for super-resolution microscopy.
    Steinhauer C; Jungmann R; Sobey TL; Simmel FC; Tinnefeld P
    Angew Chem Int Ed Engl; 2009; 48(47):8870-3. PubMed ID: 19830751
    [No Abstract]   [Full Text] [Related]  

  • 11. A practical approach for the detection of DNA nanostructures in single live human cells by fluorescence microscopy.
    Bergamini C; Angelini P; Rhoden KJ; Porcelli AM; Fato R; Zuccheri G
    Methods; 2014 May; 67(2):185-92. PubMed ID: 24440746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photo-Induced Depletion of Binding Sites in DNA-PAINT Microscopy.
    Blumhardt P; Stein J; Mücksch J; Stehr F; Bauer J; Jungmann R; Schwille P
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30513691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single molecule microscopy methods for the study of DNA origami structures.
    Birkedal V; Dong M; Golas MM; Sander B; Andersen ES; Gothelf KV; Besenbacher F; Kjems J
    Microsc Res Tech; 2011 Jul; 74(7):688-98. PubMed ID: 21698717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly and microscopic characterization of DNA origami structures.
    Scheible M; Jungmann R; Simmel FC
    Adv Exp Med Biol; 2012; 733():87-96. PubMed ID: 22101715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The DNA-PAINT palette: a comprehensive performance analysis of fluorescent dyes.
    Steen PR; Unterauer EM; Masullo LA; Kwon J; Perovic A; Jevdokimenko K; Opazo F; Fornasiero EF; Jungmann R
    Nat Methods; 2024 Sep; 21(9):1755-1762. PubMed ID: 39112798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA Bipedal Motor Achieves a Large Number of Steps Due to Operation Using Microfluidics-Based Interface.
    Tomov TE; Tsukanov R; Glick Y; Berger Y; Liber M; Avrahami D; Gerber D; Nir E
    ACS Nano; 2017 Apr; 11(4):4002-4008. PubMed ID: 28402651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of cellular uptake of DNA nanostructures by qPCR.
    Okholm AH; Nielsen JS; Vinther M; Sørensen RS; Schaffert D; Kjems J
    Methods; 2014 May; 67(2):193-7. PubMed ID: 24472874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami.
    Jungmann R; Steinhauer C; Scheible M; Kuzyk A; Tinnefeld P; Simmel FC
    Nano Lett; 2010 Nov; 10(11):4756-61. PubMed ID: 20957983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering the self-assembly of DNA nanostructures by thermodynamics and kinetics.
    Wei X; Nangreave J; Liu Y
    Acc Chem Res; 2014 Jun; 47(6):1861-70. PubMed ID: 24851996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A protein adaptor to locate a functional protein dimer on molecular switchboard.
    Ngo TA; Nakata E; Saimura M; Kodaki T; Morii T
    Methods; 2014 May; 67(2):142-50. PubMed ID: 24184887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.