These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24602861)

  • 1. Lessons learned from water/sediment-testing of pharmaceuticals.
    Radke M; Maier MP
    Water Res; 2014 May; 55():63-73. PubMed ID: 24602861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain.
    da Silva BF; Jelic A; López-Serna R; Mozeto AA; Petrovic M; Barceló D
    Chemosphere; 2011 Nov; 85(8):1331-9. PubMed ID: 21880345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sediment-water interactions of pharmaceutical residues in the river environment.
    Zhou J; Broodbank N
    Water Res; 2014 Jan; 48():61-70. PubMed ID: 24091188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experiences with the OECD 308 transformation test: a human pharmaceutical perspective.
    Ericson JF; Smith RM; Roberts G; Hannah B; Hoeger B; Ryan J
    Integr Environ Assess Manag; 2014 Jan; 10(1):114-24. PubMed ID: 23794155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening for pharmaceutical transformation products formed in river sediment by combining ultrahigh performance liquid chromatography/high resolution mass spectrometry with a rapid data-processing method.
    Li Z; Maier MP; Radke M
    Anal Chim Acta; 2014 Jan; 810():61-70. PubMed ID: 24439506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate of pharmaceuticals in rivers: Deriving a benchmark dataset at favorable attenuation conditions.
    Kunkel U; Radke M
    Water Res; 2012 Nov; 46(17):5551-5565. PubMed ID: 22898670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of acidic pharmaceuticals in bed sediments: insight from a laboratory experiment.
    Kunkel U; Radke M
    Environ Sci Technol; 2008 Oct; 42(19):7273-9. PubMed ID: 18939558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 6:2 fluorotelomer alcohol biotransformation in an aerobic river sediment system.
    Zhao L; Folsom PW; Wolstenholme BW; Sun H; Wang N; Buck RC
    Chemosphere; 2013 Jan; 90(2):203-9. PubMed ID: 22840539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal variation of pharmaceuticals in an urban and agriculturally influenced stream.
    Veach AM; Bernot MJ
    Sci Total Environ; 2011 Oct; 409(21):4553-63. PubMed ID: 21855963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers.
    Osorio V; Larrañaga A; Aceña J; Pérez S; Barceló D
    Sci Total Environ; 2016 Jan; 540():267-77. PubMed ID: 26170112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence and modeling of pharmaceuticals on a sewage-impacted Mediterranean river and their dynamics under different hydrological conditions.
    Osorio V; Marcé R; Pérez S; Ginebreda A; Cortina JL; Barceló D
    Sci Total Environ; 2012 Dec; 440():3-13. PubMed ID: 23022258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence of ionophore antibiotics in water and sediments of a mixed-landscape watershed.
    Kim SC; Carlson K
    Water Res; 2006 Jul; 40(13):2549-60. PubMed ID: 16790258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of six anticancer drugs and a variety of other pharmaceuticals, and their sorption onto sediments, in an urban Japanese river.
    Azuma T; Arima N; Tsukada A; Hirami S; Matsuoka R; Moriwake R; Ishiuchi H; Inoyama T; Teranishi Y; Yamaoka M; Ishida M; Hisamatsu K; Yunoki A; Mino Y
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):19021-19030. PubMed ID: 28660504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting the dissipation of pharmaceuticals in freshwater sediments.
    Al-Khazrajy OSA; Bergström E; Boxall ABA
    Environ Toxicol Chem; 2018 Mar; 37(3):829-838. PubMed ID: 29068472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive tracer test to evaluate the fate of pharmaceuticals in rivers.
    Kunkel U; Radke M
    Environ Sci Technol; 2011 Aug; 45(15):6296-302. PubMed ID: 21671643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isotopic exchangeability as a measure of the available fraction of the human pharmaceutical carbamazepine in river sediment.
    Williams M; Kookana R
    Sci Total Environ; 2010 Aug; 408(17):3689-95. PubMed ID: 20537370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental fate of pharmaceuticals in water/sediment systems.
    Löffler D; Römbke J; Meller M; Ternes TA
    Environ Sci Technol; 2005 Jul; 39(14):5209-18. PubMed ID: 16082949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden.
    Bendz D; Paxéus NA; Ginn TR; Loge FJ
    J Hazard Mater; 2005 Jul; 122(3):195-204. PubMed ID: 15967274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmaceutical residues in tidal surface sediments of three rivers in southeastern China at detectable and measurable levels.
    Chen YS; Yu S; Hong YW; Lin QY; Li HB
    Environ Sci Pollut Res Int; 2013 Dec; 20(12):8391-403. PubMed ID: 23764981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sediment toxicity in mid-continent great rivers (USA).
    Haring HJ; Blocksom KA; Smith ME; Angradi T; Wratschko MC; Armstrong B; Bolgrien D; Lazorchak JM
    Arch Environ Contam Toxicol; 2011 Jan; 60(1):57-67. PubMed ID: 20799029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.