These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 24602861)
21. Development of the sediment and water quality management strategies for the Salt-water River, Taiwan. Lin CE; Chen CT; Kao CM; Hong A; Wu CY Mar Pollut Bull; 2011; 63(5-12):528-34. PubMed ID: 21392809 [TBL] [Abstract][Full Text] [Related]
22. Fate of beta blockers in aquatic-sediment systems: sorption and biotransformation. Ramil M; El Aref T; Fink G; Scheurer M; Ternes TA Environ Sci Technol; 2010 Feb; 44(3):962-70. PubMed ID: 20030338 [TBL] [Abstract][Full Text] [Related]
23. Investigation on metal pollution in the sediment of Chongqing segment of Yangtse River. Luo CH; Wu QM; Li S; Yang H; Zhong CH Bull Environ Contam Toxicol; 2010 Sep; 85(3):291-4. PubMed ID: 20571758 [TBL] [Abstract][Full Text] [Related]
24. Spatial variability of metal pollution in groyne fields of the Middle Elbe--implications for sediment monitoring. Baborowski M; Büttner O; Morgenstern P; Jancke T; Westrich B Environ Pollut; 2012 Aug; 167():115-23. PubMed ID: 22564399 [TBL] [Abstract][Full Text] [Related]
25. Long-term monitoring (1960-2008) of the river-sediment transport in the Red River Watershed (Vietnam): temporal variability and dam-reservoir impact. Dang TH; Coynel A; Orange D; Blanc G; Etcheber H; Le LA Sci Total Environ; 2010 Sep; 408(20):4654-64. PubMed ID: 20673966 [TBL] [Abstract][Full Text] [Related]
26. Partitioning behavior of five pharmaceutical compounds to activated sludge and river sediment. Jones OA; Voulvoulis N; Lester JN Arch Environ Contam Toxicol; 2006 Apr; 50(3):297-305. PubMed ID: 16328615 [TBL] [Abstract][Full Text] [Related]
27. Levels of six estrogens in water and sediment from three rivers in Tianjin area, China. Lei B; Huang S; Zhou Y; Wang D; Wang Z Chemosphere; 2009 Jun; 76(1):36-42. PubMed ID: 19303134 [TBL] [Abstract][Full Text] [Related]
28. Phosphorus sorption and fraction characteristics in the upper, middle and low reach sediments of the Daliao river systems, China. Lin C; Wang Z; He M; Li Y; Liu R; Yang Z J Hazard Mater; 2009 Oct; 170(1):278-85. PubMed ID: 19477067 [TBL] [Abstract][Full Text] [Related]
29. Temporal variations in natural attenuation of chlorinated aliphatic hydrocarbons in eutrophic river sediments impacted by a contaminated groundwater plume. Hamonts K; Kuhn T; Vos J; Maesen M; Kalka H; Smidt H; Springael D; Meckenstock RU; Dejonghe W Water Res; 2012 Apr; 46(6):1873-88. PubMed ID: 22280951 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of the toxicity of river and creek sediments in Hungary with two different methods. Torokne A; Toro K Environ Toxicol; 2010 Oct; 25(5):504-9. PubMed ID: 20549625 [TBL] [Abstract][Full Text] [Related]
31. Spatial distribution of antimony and arsenic levels in Manadas Creek, an urban tributary of the Rio Grande in Laredo, Texas. Baeza M; Ren J; Krishnamurthy S; Vaughan TC Arch Environ Contam Toxicol; 2010 Feb; 58(2):299-314. PubMed ID: 19629573 [TBL] [Abstract][Full Text] [Related]
32. Impacts of compound properties and sediment characteristics on the sorption behaviour of pharmaceuticals in aquatic systems. Al-Khazrajy OSA; Boxall ABA J Hazard Mater; 2016 Nov; 317():198-209. PubMed ID: 27270139 [TBL] [Abstract][Full Text] [Related]
33. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Cheung KC; Poon BH; Lan CY; Wong MH Chemosphere; 2003 Sep; 52(9):1431-40. PubMed ID: 12867173 [TBL] [Abstract][Full Text] [Related]
34. Sorption of selected pharmaceuticals by a river sediment: role and mechanisms of sediment or Aldrich humic substances. Le Guet T; Hsini I; Labanowski J; Mondamert L Environ Sci Pollut Res Int; 2018 May; 25(15):14532-14543. PubMed ID: 29527647 [TBL] [Abstract][Full Text] [Related]
35. Transformation and sorption of fipronil in urban stream sediments. Lin K; Haver D; Oki L; Gan J J Agric Food Chem; 2008 Sep; 56(18):8594-600. PubMed ID: 18729374 [TBL] [Abstract][Full Text] [Related]
36. Fate of organic micropollutants in the hyporheic zone of a eutrophic lowland stream: results of a preliminary field study. Lewandowski J; Putschew A; Schwesig D; Neumann C; Radke M Sci Total Environ; 2011 Apr; 409(10):1824-35. PubMed ID: 21349571 [TBL] [Abstract][Full Text] [Related]
37. Methodology to assess the mobility of trace elements between water and contaminated estuarine sediments as a function of the site physico-chemical characteristics. Fdez-Ortiz de Vallejuelo S; Gredilla A; de Diego A; Arana G; Madariaga JM Sci Total Environ; 2014 Mar; 473-474():359-71. PubMed ID: 24378927 [TBL] [Abstract][Full Text] [Related]
38. Distribution patterns of nitrobenzenes and polychlorinated biphenyls in water, suspended particulate matter and sediment from mid- and down-stream of the Yellow River (China). He MC; Sun Y; Li XR; Yang ZF Chemosphere; 2006 Oct; 65(3):365-74. PubMed ID: 16580044 [TBL] [Abstract][Full Text] [Related]
39. Pesticide residues in river sediments from the Pantanal Wetland, Brazil. Miranda K; Cunha ML; Dores EF; Calheiros DF J Environ Sci Health B; 2008 Nov; 43(8):717-22. PubMed ID: 18941997 [TBL] [Abstract][Full Text] [Related]
40. Heavy metal contamination of river Yamuna, Haryana, India: Assessment by Metal Enrichment Factor of the Sediments. Kaushik A; Kansal A; Santosh ; Meena ; Kumari S; Kaushik CP J Hazard Mater; 2009 May; 164(1):265-70. PubMed ID: 18809251 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]