These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 24603295)

  • 1. Light induced conch-shaped relief in an azo-polymer film.
    Watabe M; Juman G; Miyamoto K; Omatsu T
    Sci Rep; 2014 Mar; 4():4281. PubMed ID: 24603295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Azo-polymer film twisted to form a helical surface relief by illumination with a circularly polarized Gaussian beam.
    Masuda K; Nakano S; Barada D; Kumakura M; Miyamoto K; Omatsu T
    Opt Express; 2017 May; 25(11):12499-12507. PubMed ID: 28786606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale chiral surface relief of azo-polymers with nearfield OAM light.
    Masuda K; Shinozaki R; Kinezuka Y; Lee J; Ohno S; Hashiyada S; Okamoto H; Sakai D; Harada K; Miyamoto K; Omatsu T
    Opt Express; 2018 Aug; 26(17):22197-22207. PubMed ID: 30130916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination.
    Ambrosio A; Marrucci L; Borbone F; Roviello A; Maddalena P
    Nat Commun; 2012; 3():989. PubMed ID: 22871808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic and Electric Control of Circularly Polarized Emission through Tuning Chirality-Generated Orbital Angular Momentum in Organic Helical Polymeric Nanofibers.
    Wang Z; Gao M; Ren S; Hao X; Qin W
    Adv Mater; 2019 Nov; 31(48):e1904857. PubMed ID: 31588656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using optical vortex to control the chirality of twisted metal nanostructures.
    Toyoda K; Miyamoto K; Aoki N; Morita R; Omatsu T
    Nano Lett; 2012 Jul; 12(7):3645-9. PubMed ID: 22690654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials.
    Li W; Coppens ZJ; Besteiro LV; Wang W; Govorov AO; Valentine J
    Nat Commun; 2015 Sep; 6():8379. PubMed ID: 26391292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant Helical Dichroism of Single Chiral Nanostructures with Photonic Orbital Angular Momentum.
    Ni J; Liu S; Hu G; Hu Y; Lao Z; Li J; Zhang Q; Wu D; Dong S; Chu J; Qiu CW
    ACS Nano; 2021 Feb; 15(2):2893-2900. PubMed ID: 33497201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chirality Remote Control in Nanoporous Materials by Circularly Polarized Light.
    Kanj AB; Bürck J; Vankova N; Li C; Mutruc D; Chandresh A; Hecht S; Heine T; Heinke L
    J Am Chem Soc; 2021 May; 143(18):7059-7068. PubMed ID: 33915047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angular momentum-induced circular dichroism in non-chiral nanostructures.
    Zambrana-Puyalto X; Vidal X; Molina-Terriza G
    Nat Commun; 2014 Sep; 5():4922. PubMed ID: 25215603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing and reducing chirality by opposite circularly-polarized light irradiation on crystalline chiral domains consisting of nonchiral photoresponsive W-shaped liquid crystal molecules.
    Choi SW; Takezoe H
    Soft Matter; 2016 Sep; 12(38):7937-7942. PubMed ID: 27714293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromagnetic Energy Redistribution in Coupled Chiral Particle Chain-Film System.
    Tang Y; Huang Y; Qv L; Fang Y
    Nanoscale Res Lett; 2018 Jul; 13(1):194. PubMed ID: 29978337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization Dependent Photoinduced Supramolecular Chirality in High-Performance Azo Materials.
    Bagatur S; Schlesag M; Fuhrmann-Lieker T
    Molecules; 2021 May; 26(10):. PubMed ID: 34064773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermocapillary Marangoni Flows in Azopolymers.
    Miniewicz A; Sobolewska A; Piotrowski W; Karpinski P; Bartkiewicz S; Schab-Balcerzak E
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32481714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct laser printing of chiral plasmonic nanojets by vortex beams.
    Syubaev S; Zhizhchenko A; Kuchmizhak A; Porfirev A; Pustovalov E; Vitrik O; Kulchin Y; Khonina S; Kudryashov S
    Opt Express; 2017 May; 25(9):10214-10223. PubMed ID: 28468395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A planar chiral meta-surface for optical vortex generation and focusing.
    Ma X; Pu M; Li X; Huang C; Wang Y; Pan W; Zhao B; Cui J; Wang C; Zhao Z; Luo X
    Sci Rep; 2015 May; 5():10365. PubMed ID: 25988213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer of light helicity to nanostructures.
    Toyoda K; Takahashi F; Takizawa S; Tokizane Y; Miyamoto K; Morita R; Omatsu T
    Phys Rev Lett; 2013 Apr; 110(14):143603. PubMed ID: 25166987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Chirality and Circular Dichroism in Bioassembled and Nonbiological Systems: Theoretical Background and Recent Progress.
    Kong XT; Besteiro LV; Wang Z; Govorov AO
    Adv Mater; 2020 Oct; 32(41):e1801790. PubMed ID: 30260543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers.
    Kong XT; Khosravi Khorashad L; Wang Z; Govorov AO
    Nano Lett; 2018 Mar; 18(3):2001-2008. PubMed ID: 29420903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of chiroptically switchable films via co-gelation of a small chiral gelator with an achiral azobenzene-containing polymer.
    Yang D; Zhang L; Yin L; Zhao Y; Zhang W; Liu M
    Soft Matter; 2017 Sep; 13(36):6129-6136. PubMed ID: 28791338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.