These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 24603363)
1. Structural insights into E. coli porphobilinogen deaminase during synthesis and exit of 1-hydroxymethylbilane. Bung N; Pradhan M; Srinivasan H; Bulusu G PLoS Comput Biol; 2014 Mar; 10(3):e1003484. PubMed ID: 24603363 [TBL] [Abstract][Full Text] [Related]
3. Human hydroxymethylbilane synthase: Molecular dynamics of the pyrrole chain elongation identifies step-specific residues that cause AIP. Bung N; Roy A; Chen B; Das D; Pradhan M; Yasuda M; New MI; Desnick RJ; Bulusu G Proc Natl Acad Sci U S A; 2018 Apr; 115(17):E4071-E4080. PubMed ID: 29632172 [TBL] [Abstract][Full Text] [Related]
4. Structural basis of pyrrole polymerization in human porphobilinogen deaminase. Pluta P; Roversi P; Bernardo-Seisdedos G; Rojas AL; Cooper JB; Gu S; Pickersgill RW; Millet O Biochim Biophys Acta Gen Subj; 2018 Sep; 1862(9):1948-1955. PubMed ID: 29908816 [TBL] [Abstract][Full Text] [Related]
5. Crystal structures of hydroxymethylbilane synthase complexed with a substrate analog: a single substrate-binding site for four consecutive condensation steps. Sato H; Sugishima M; Tsukaguchi M; Masuko T; Iijima M; Takano M; Omata Y; Hirabayashi K; Wada K; Hisaeda Y; Yamamoto K Biochem J; 2021 Mar; 478(5):1023-1042. PubMed ID: 33600566 [TBL] [Abstract][Full Text] [Related]
6. Insights into the mechanism of pyrrole polymerization catalysed by porphobilinogen deaminase: high-resolution X-ray studies of the Arabidopsis thaliana enzyme. Roberts A; Gill R; Hussey RJ; Mikolajek H; Erskine PT; Cooper JB; Wood SP; Chrystal EJ; Shoolingin-Jordan PM Acta Crystallogr D Biol Crystallogr; 2013 Mar; 69(Pt 3):471-85. PubMed ID: 23519422 [TBL] [Abstract][Full Text] [Related]
7. Heme Binding to Porphobilinogen Deaminase from Vibrio cholerae Decelerates the Formation of 1-Hydroxymethylbilane. Uchida T; Funamizu T; Chen M; Tanaka Y; Ishimori K ACS Chem Biol; 2018 Mar; 13(3):750-760. PubMed ID: 29360345 [TBL] [Abstract][Full Text] [Related]
8. The biosynthesis of uroporphyrinogen III: mechanism of action of porphobilinogen deaminase. Jordan PM Ciba Found Symp; 1994; 180():70-89; discussion 89-96. PubMed ID: 7842863 [TBL] [Abstract][Full Text] [Related]
9. Computational modeling of the catalytic mechanism of hydroxymethylbilane synthase. Bung N; Roy A; Priyakumar UD; Bulusu G Phys Chem Chem Phys; 2019 Apr; 21(15):7932-7940. PubMed ID: 30918925 [TBL] [Abstract][Full Text] [Related]
10. Discovery that the assembly of the dipyrromethane cofactor of porphobilinogen deaminase holoenzyme proceeds initially by the reaction of preuroporphyrinogen with the apoenzyme. Shoolingin-Jordan PM; Warren MJ; Awan SJ Biochem J; 1996 Jun; 316 ( Pt 2)(Pt 2):373-6. PubMed ID: 8687374 [TBL] [Abstract][Full Text] [Related]
11. Mutagenesis of arginine residues in the catalytic cleft of Escherichia coli porphobilinogen deaminase that affects dipyrromethane cofactor assembly and tetrapyrrole chain initiation and elongation. Jordan PM; Woodcock SC Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):445-9. PubMed ID: 1747120 [TBL] [Abstract][Full Text] [Related]
12. Investigation into the nature of substrate binding to the dipyrromethane cofactor of Escherichia coli porphobilinogen deaminase. Warren MJ; Jordan PM Biochemistry; 1988 Dec; 27(25):9020-30. PubMed ID: 3069132 [TBL] [Abstract][Full Text] [Related]
13. Structural studies of domain movement in active-site mutants of porphobilinogen deaminase from Bacillus megaterium. Guo J; Erskine P; Coker AR; Wood SP; Cooper JB Acta Crystallogr F Struct Biol Commun; 2017 Nov; 73(Pt 11):612-620. PubMed ID: 29095155 [TBL] [Abstract][Full Text] [Related]
14. Structural evidence for the partially oxidized dipyrromethene and dipyrromethanone forms of the cofactor of porphobilinogen deaminase: structures of the Bacillus megaterium enzyme at near-atomic resolution. Azim N; Deery E; Warren MJ; Wolfenden BA; Erskine P; Cooper JB; Coker A; Wood SP; Akhtar M Acta Crystallogr D Biol Crystallogr; 2014 Mar; 70(Pt 3):744-51. PubMed ID: 24598743 [TBL] [Abstract][Full Text] [Related]
15. Evidence for a dipyrromethane cofactor at the catalytic site of E. coli porphobilinogen deaminase. Jordan PM; Warren MJ FEBS Lett; 1987 Dec; 225(1-2):87-92. PubMed ID: 3079571 [TBL] [Abstract][Full Text] [Related]
16. Structural insight into acute intermittent porphyria. Song G; Li Y; Cheng C; Zhao Y; Gao A; Zhang R; Joachimiak A; Shaw N; Liu ZJ FASEB J; 2009 Feb; 23(2):396-404. PubMed ID: 18936296 [TBL] [Abstract][Full Text] [Related]
17. Human porphobilinogen deaminase mutations in the investigation of the mechanism of dipyrromethane cofactor assembly and tetrapyrrole formation. Shoolingin-Jordan PM; Al-Dbass A; McNeill LA; Sarwar M; Butler D Biochem Soc Trans; 2003 Jun; 31(Pt 3):731-5. PubMed ID: 12773194 [TBL] [Abstract][Full Text] [Related]
18. Yeast porphobilinogen deaminase also forms enzyme-pyrrole intermediates. Correa Garcia S; Rossetti MV; Bermudez Moretti M; Batlle AM Enzyme Protein; 1994-1995; 48(5-6):275-81. PubMed ID: 8792872 [TBL] [Abstract][Full Text] [Related]
19. Identification of a cysteine residue as the binding site for the dipyrromethane cofactor at the active site of Escherichia coli porphobilinogen deaminase. Jordan PM; Warren MJ; Williams HJ; Stolowich NJ; Roessner CA; Grant SK; Scott AI FEBS Lett; 1988 Aug; 235(1-2):189-93. PubMed ID: 3042456 [TBL] [Abstract][Full Text] [Related]
20. Dipyrromethane cofactor assembly of porphobilinogen deaminase: formation of apoenzyme and preparation of holoenzyme. Shoolingin-Jordan PM; Warren MJ; Awan SJ Methods Enzymol; 1997; 281():317-27. PubMed ID: 9250996 [No Abstract] [Full Text] [Related] [Next] [New Search]