These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 24603413)
1. Hyperthermophile protein behavior: partially-structured conformations of Pyrococcus furiosus rubredoxin monomers generated through forced cold-denaturation and refolding. Chandrayan SK; Prakash S; Ahmed S; Guptasarma P PLoS One; 2014; 9(3):e80014. PubMed ID: 24603413 [TBL] [Abstract][Full Text] [Related]
2. The key to the extraordinary thermal stability of P. furiosus holo-rubredoxin: iron binding-guided packing of a core aromatic cluster responsible for high kinetic stability of the native structure. Prakash S; Sundd M; Guptasarma P PLoS One; 2014; 9(3):e89703. PubMed ID: 24603898 [TBL] [Abstract][Full Text] [Related]
3. Partial destabilization of native structure by a combination of heat and denaturant facilitates cold denaturation in a hyperthermophile protein. Chandrayan SK; Guptasarma P Proteins; 2008 Aug; 72(2):539-46. PubMed ID: 18452212 [TBL] [Abstract][Full Text] [Related]
4. Unusually slow denaturation and refolding processes of pyrrolidone carboxyl peptidase from a hyperthermophile are highly cooperative: real-time NMR studies. Iimura S; Yagi H; Ogasahara K; Akutsu H; Noda Y; Segawa S; Yutani K Biochemistry; 2004 Sep; 43(37):11906-15. PubMed ID: 15362877 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for thermostability in aporubredoxins from Pyrococcus furiosus and Clostridium pasteurianum. Zartler ER; Jenney FE; Terrell M; Eidsness MK; Adams MW; Prestegard JH Biochemistry; 2001 Jun; 40(24):7279-90. PubMed ID: 11401576 [TBL] [Abstract][Full Text] [Related]
6. Unfolding mechanism of rubredoxin from Pyrococcus furiosus. Cavagnero S; Zhou ZH; Adams MW; Chan SI Biochemistry; 1998 Mar; 37(10):3377-85. PubMed ID: 9521658 [TBL] [Abstract][Full Text] [Related]
7. Contribution of surface salt bridges to protein stability. Strop P; Mayo SL Biochemistry; 2000 Feb; 39(6):1251-5. PubMed ID: 10684603 [TBL] [Abstract][Full Text] [Related]
8. Stability and dynamics in a hyperthermophilic protein with melting temperature close to 200 degrees C. Hiller R; Zhou ZH; Adams MW; Englander SW Proc Natl Acad Sci U S A; 1997 Oct; 94(21):11329-32. PubMed ID: 9326609 [TBL] [Abstract][Full Text] [Related]
9. X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Day MW; Hsu BT; Joshua-Tor L; Park JB; Zhou ZH; Adams MW; Rees DC Protein Sci; 1992 Nov; 1(11):1494-507. PubMed ID: 1303768 [TBL] [Abstract][Full Text] [Related]
10. Slow irreversible unfolding of Pyrococcus furiosus triosephosphate isomerase: separation and quantitation of conformers through a novel electrophoretic approach. Mukherjee S; Sharma S; Kumar S; Guptasarma P Anal Biochem; 2005 Dec; 347(1):49-59. PubMed ID: 16236239 [TBL] [Abstract][Full Text] [Related]
11. The unusually slow relaxation kinetics of the folding-unfolding of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus. Kaushik JK; Ogasahara K; Yutani K J Mol Biol; 2002 Mar; 316(4):991-1003. PubMed ID: 11884137 [TBL] [Abstract][Full Text] [Related]
12. Millisecond time scale conformational flexibility in a hyperthermophile protein at ambient temperature. Hernandez G; Jenney FE; Adams MW; LeMaster DM Proc Natl Acad Sci U S A; 2000 Mar; 97(7):3166-70. PubMed ID: 10716696 [TBL] [Abstract][Full Text] [Related]
13. Determinants of protein hyperthermostability: purification and amino acid sequence of rubredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus and secondary structure of the zinc adduct by NMR. Blake PR; Park JB; Bryant FO; Aono S; Magnuson JK; Eccleston E; Howard JB; Summers MF; Adams MW Biochemistry; 1991 Nov; 30(45):10885-95. PubMed ID: 1932012 [TBL] [Abstract][Full Text] [Related]
14. Additivity of differential conformational dynamics in hyperthermophile/mesophile rubredoxin chimeras as monitored by hydrogen exchange. LeMaster DM; Hernández G Chembiochem; 2006 Dec; 7(12):1886-9. PubMed ID: 17068837 [No Abstract] [Full Text] [Related]
15. A billion-fold range in acidity for the solvent-exposed amides of Pyrococcus furiosus rubredoxin. Anderson JS; Hernández G; Lemaster DM Biochemistry; 2008 Jun; 47(23):6178-88. PubMed ID: 18479148 [TBL] [Abstract][Full Text] [Related]
16. Kinetically robust monomeric protein from a hyperthermophile. Mukaiyama A; Takano K; Haruki M; Morikawa M; Kanaya S Biochemistry; 2004 Nov; 43(43):13859-66. PubMed ID: 15504048 [TBL] [Abstract][Full Text] [Related]
17. Neutron diffraction studies on rubredoxin from Pyrococcus furiosus. Bau R J Synchrotron Radiat; 2004 Jan; 11(Pt 1):76-9. PubMed ID: 14646139 [TBL] [Abstract][Full Text] [Related]
18. Denaturation of an extremely stable hyperthermophilic protein occurs via a dimeric intermediate. Powers SL; Robinson CR; Robinson AS Extremophiles; 2007 Jan; 11(1):179-89. PubMed ID: 17072686 [TBL] [Abstract][Full Text] [Related]
19. An exceptionally stable Group II chaperonin from the hyperthermophile Pyrococcus furiosus. Luo H; Laksanalamai P; Robb FT Arch Biochem Biophys; 2009 Jun; 486(1):12-8. PubMed ID: 19298788 [TBL] [Abstract][Full Text] [Related]
20. Refolding pathway and association intermediates of glutamate dehydrogenase from the hyperthermophile Pyrococcus furiosus. Consalvi V; Chiaraluce R; Millevoi S; Pasquo A; Vecchini P; Chiancone E; Scandurra R Eur J Biochem; 1996 Aug; 239(3):679-85. PubMed ID: 8774713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]