These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24603655)

  • 1. Deformation-induced structural transition in body-centred cubic molybdenum.
    Wang SJ; Wang H; Du K; Zhang W; Sui ML; Mao SX
    Nat Commun; 2014 Mar; 5():3433. PubMed ID: 24603655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dislocation "Bubble-Like-Effect" and the Ambient Temperature Super-plastic Elongation of Body-centred Cubic Single Crystalline Molybdenum.
    Lu Y; Xiang S; Xiao L; Wang L; Deng Q; Zhang Z; Han X
    Sci Rep; 2016 Mar; 6():22937. PubMed ID: 26956918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit.
    Wang L; Liu P; Guan P; Yang M; Sun J; Cheng Y; Hirata A; Zhang Z; Ma E; Chen M; Han X
    Nat Commun; 2013; 4():2413. PubMed ID: 24022231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning strain-induced γ-to-ε martensitic transformation of biomedical Co-Cr-Mo alloys by introducing parent phase lattice defects.
    Mori M; Yamanaka K; Sato S; Tsubaki S; Satoh K; Kumagai M; Imafuku M; Shobu T; Chiba A
    J Mech Behav Biomed Mater; 2019 Feb; 90():523-529. PubMed ID: 30458336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys.
    Qi L; Chrzan DC
    Phys Rev Lett; 2014 Mar; 112(11):115503. PubMed ID: 24702389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation behavior of metastable β-type Ti-25Nb-2Mo-4Sn alloy for biomedical applications.
    Guo S; Meng QK; Cheng XN; Zhao XQ
    J Mech Behav Biomed Mater; 2014 Oct; 38():26-32. PubMed ID: 25011015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of microstructure on the dry sliding friction behavior of CoCrMo alloys used in metal-on-metal hip implants.
    Varano R; Bobyn JD; Medley JB; Yue S
    J Biomed Mater Res B Appl Biomater; 2006 Feb; 76(2):281-6. PubMed ID: 16080175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-stress-induced phase transformation in metal nanowires.
    Diao J; Gall K; Dunn ML
    Nat Mater; 2003 Oct; 2(10):656-60. PubMed ID: 12958594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomalous slip in body-centred cubic metals.
    Caillard D; Bienvenu B; Clouet E
    Nature; 2022 Sep; 609(7929):936-941. PubMed ID: 36171385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time, high-resolution study of nanocrystallization and fatigue cracking in a cyclically strained metallic glass.
    Wang CC; Mao YW; Shan ZW; Dao M; Li J; Sun J; Ma E; Suresh S
    Proc Natl Acad Sci U S A; 2013 Dec; 110(49):19725-30. PubMed ID: 24255113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys.
    Kuroda PAB; Buzalaf MAR; Grandini CR
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():511-515. PubMed ID: 27287149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local strain evolution due to athermal γ→ε martensitic transformation in biomedical CoCrMo alloys.
    Yamanaka K; Mori M; Koizumi Y; Chiba A
    J Mech Behav Biomed Mater; 2014 Apr; 32():52-61. PubMed ID: 24412717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear-induced anisotropic plastic flow from body-centred-cubic tantalum before melting.
    Wu CJ; Söderlind P; Glosli JN; Klepeis JE
    Nat Mater; 2009 Mar; 8(3):223-8. PubMed ID: 19169246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation-dependent plasticity in metal nanowires under torsion: twist boundary formation and Eshelby twist.
    Weinberger CR; Cai W
    Nano Lett; 2010 Jan; 10(1):139-42. PubMed ID: 20030357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Texture evolution and mechanical behaviour of irradiated face-centred cubic metals.
    Chen LR; Xiao XZ; Yu L; Chu HJ; Duan HL
    Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170604. PubMed ID: 29507510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten.
    Wang J; Zeng Z; Weinberger CR; Zhang Z; Zhu T; Mao SX
    Nat Mater; 2015 Jun; 14(6):594-600. PubMed ID: 25751073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new regime for mechanical annealing and strong sample-size strengthening in body centred cubic molybdenum.
    Huang L; Li QJ; Shan ZW; Li J; Sun J; Ma E
    Nat Commun; 2011 Nov; 2():547. PubMed ID: 22109521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for determining void arrangements in inverse opals.
    Blanford CF; Carter CB; Stein A
    J Microsc; 2004 Dec; 216(Pt 3):263-87. PubMed ID: 15566498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphere packings as a tool for the description of martensitic phase transformations.
    Sowa H
    Acta Crystallogr A Found Adv; 2017 Jan; 73(Pt 1):39-45. PubMed ID: 28042802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of dislocation substructures in metals via high-strain-rate nanoindentation.
    Zhang Y; Hackett BL; Dong J; Xie KY; Pharr GM
    Proc Natl Acad Sci U S A; 2023 Dec; 120(50):e2310500120. PubMed ID: 38060557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.