BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 24604200)

  • 1. Mechanism of the C5 stereoinversion reaction in the biosynthesis of carbapenem antibiotics.
    Chang WC; Guo Y; Wang C; Butch SE; Rosenzweig AC; Boal AK; Krebs C; Bollinger JM
    Science; 2014 Mar; 343(6175):1140-4. PubMed ID: 24604200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of (3S,5R)-carbapenam-3-carboxylic acid and its role in carbapenem biosynthesis and the stereoinversion problem.
    Stapon A; Li R; Townsend CA
    J Am Chem Soc; 2003 Dec; 125(51):15746-7. PubMed ID: 14677956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of carbapenem synthase (CarC).
    Clifton IJ; Doan LX; Sleeman MC; Topf M; Suzuki H; Wilmouth RC; Schofield CJ
    J Biol Chem; 2003 Jun; 278(23):20843-50. PubMed ID: 12611886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insights into the bifunctional non-heme iron oxygenase carbapenem synthase by active site saturation mutagenesis.
    Phelan RM; Townsend CA
    J Am Chem Soc; 2013 May; 135(20):7496-502. PubMed ID: 23611403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbapenem biosynthesis: confirmation of stereochemical assignments and the role of CarC in the ring stereoinversion process from L-proline.
    Stapon A; Li R; Townsend CA
    J Am Chem Soc; 2003 Jul; 125(28):8486-93. PubMed ID: 12848554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition and alternate substrate studies on the mechanism of carbapenam synthetase from Erwinia carotovora.
    Gerratana B; Stapon A; Townsend CA
    Biochemistry; 2003 Jul; 42(25):7836-47. PubMed ID: 12820893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of bacterial carbapenem antibiotic production genes reveals a novel beta-lactam biosynthesis pathway.
    McGowan SJ; Sebaihia M; Porter LE; Stewart GS; Williams P; Bycroft BW; Salmond GP
    Mol Microbiol; 1996 Nov; 22(3):415-26. PubMed ID: 8939426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of carbapenem antibiotics: new carbapenam substrates for carbapenem synthase (CarC).
    Sleeman MC; Smith P; Kellam B; Chhabra SR; Bycroft BW; Schofield CJ
    Chembiochem; 2004 Jun; 5(6):879-82. PubMed ID: 15174175
    [No Abstract]   [Full Text] [Related]  

  • 9. Definition of the common and divergent steps in carbapenem β-lactam antibiotic biosynthesis.
    Bodner MJ; Li R; Phelan RM; Freeman MF; Moshos KA; Lloyd EP; Townsend CA
    Chembiochem; 2011 Sep; 12(14):2159-65. PubMed ID: 21913298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxymethylproline synthase (CarB), an unusual carbon-carbon bond-forming enzyme of the crotonase superfamily involved in carbapenem biosynthesis.
    Sleeman MC; Schofield CJ
    J Biol Chem; 2004 Feb; 279(8):6730-6. PubMed ID: 14625287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of a Ferryl Mimic in the Archetypal Iron(II)- and 2-(Oxo)-glutarate-Dependent Dioxygenase, TauD.
    Davis KM; Altmyer M; Martinie RJ; Schaperdoth I; Krebs C; Bollinger JM; Boal AK
    Biochemistry; 2019 Oct; 58(41):4218-4223. PubMed ID: 31503454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of a carbapenem antibiotic synthesis pathway in Escherichia coli.
    Shomar H; Gontier S; van den Broek NJF; Tejeda Mora H; Noga MJ; Hagedoorn PL; Bokinsky G
    Nat Chem Biol; 2018 Aug; 14(8):794-800. PubMed ID: 29942079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and mechanistic studies on carboxymethylproline synthase (CarB), a unique member of the crotonase superfamily catalyzing the first step in carbapenem biosynthesis.
    Sleeman MC; Sorensen JL; Batchelar ET; McDonough MA; Schofield CJ
    J Biol Chem; 2005 Oct; 280(41):34956-65. PubMed ID: 16096274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular genetics of carbapenem antibiotic biosynthesis.
    McGowan SJ; Holden MT; Bycroft BW; Salmond GP
    Antonie Van Leeuwenhoek; 1999; 75(1-2):135-41. PubMed ID: 10422586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-throughput screen for the engineered production of β-lactam antibiotics.
    Phelan RM; DiPardo BJ; Townsend CA
    ACS Chem Biol; 2012 May; 7(5):835-40. PubMed ID: 22428872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 2.8 Å Fe-Fe separation in the Fe2(III/IV) intermediate, X, from Escherichia coli ribonucleotide reductase.
    Dassama LM; Silakov A; Krest CM; Calixto JC; Krebs C; Bollinger JM; Green MT
    J Am Chem Soc; 2013 Nov; 135(45):16758-61. PubMed ID: 24094084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conserved lysine in beta-lactam synthetase assists ring cyclization: Implications for clavam and carbapenem biosynthesis.
    Raber ML; Castillo A; Greer A; Townsend CA
    Chembiochem; 2009 Dec; 10(18):2904-12. PubMed ID: 19882698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two Distinct Mechanisms for C-C Desaturation by Iron(II)- and 2-(Oxo)glutarate-Dependent Oxygenases: Importance of α-Heteroatom Assistance.
    Dunham NP; Chang WC; Mitchell AJ; Martinie RJ; Zhang B; Bergman JA; Rajakovich LJ; Wang B; Silakov A; Krebs C; Boal AK; Bollinger JM
    J Am Chem Soc; 2018 Jun; 140(23):7116-7126. PubMed ID: 29708749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved tyrosyl-glutamyl catalytic dyad in evolutionarily linked enzymes: carbapenam synthetase and beta-lactam synthetase.
    Raber ML; Arnett SO; Townsend CA
    Biochemistry; 2009 Jun; 48(22):4959-71. PubMed ID: 19371088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-heme iron oxygenases generate natural structural diversity in carbapenem antibiotics.
    Bodner MJ; Phelan RM; Freeman MF; Li R; Townsend CA
    J Am Chem Soc; 2010 Jan; 132(1):12-3. PubMed ID: 20017478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.