BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24604500)

  • 1. Process characterization and influence of alternative carbon sources and carbon-to-nitrogen ratio on organic acid production by Aspergillus oryzae DSM1863.
    Ochsenreither K; Fischer C; Neumann A; Syldatk C
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5449-60. PubMed ID: 24604500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced l-Malic Acid Production by
    Schmitt V; Derenbach L; Ochsenreither K
    Front Bioeng Biotechnol; 2021; 9():760500. PubMed ID: 35083199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of fumaric acid by Rhizopus oryzae: role of carbon-nitrogen ratio.
    Ding Y; Li S; Dou C; Yu Y; Huang H
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1461-7. PubMed ID: 21416336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of L-malic acid production from acetate with Aspergillus oryzae DSM 1863 using a pH-coupled feeding strategy.
    Kövilein A; Aschmann V; Zadravec L; Ochsenreither K
    Microb Cell Fact; 2022 Nov; 21(1):242. PubMed ID: 36419102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable carbon sources for microbial organic acid production with filamentous fungi.
    Dörsam S; Fesseler J; Gorte O; Hahn T; Zibek S; Syldatk C; Ochsenreither K
    Biotechnol Biofuels; 2017; 10():242. PubMed ID: 29075326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68.
    Knuf C; Nookaew I; Remmers I; Khoomrung S; Brown S; Berry A; Nielsen J
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3517-27. PubMed ID: 24413918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of nitrogen-limitation on xylose metabolism and key enzymes activity in Rhizopus oryzae].
    Yu Y; Xu Q; Li S
    Wei Sheng Wu Xue Bao; 2013 Nov; 53(11):1189-94. PubMed ID: 24617260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of Primary Metabolites by
    Zaveri A; Edwards J; Rochfort S
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36364023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A co-utilization strategy to consume glycerol and monosaccharides by Rhizopus strains for fumaric acid production.
    Kowalczyk S; Komoń-Janczara E; Glibowska A; Kuzdraliński A; Czernecki T; Targoński Z
    AMB Express; 2018 Apr; 8(1):69. PubMed ID: 29713843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of process mode, nitrogen source and temperature on L-malic acid production with
    Kövilein A; Zadravec L; Hohmann S; Umpfenbach J; Ochsenreither K
    Front Bioeng Biotechnol; 2022; 10():1033777. PubMed ID: 36312560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of a C
    Yang L; Christakou E; Vang J; Lübeck M; Lübeck PS
    Microb Cell Fact; 2017 Mar; 16(1):43. PubMed ID: 28288640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor.
    Battat E; Peleg Y; Bercovitz A; Rokem JS; Goldberg I
    Biotechnol Bioeng; 1991 May; 37(11):1108-16. PubMed ID: 18597343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid.
    Brown SH; Bashkirova L; Berka R; Chandler T; Doty T; McCall K; McCulloch M; McFarland S; Thompson S; Yaver D; Berry A
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8903-12. PubMed ID: 23925533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of kojic acid production in Aspergillus oryzae B008 mutant strain and its uses in fermentation of concentrated corn stalk hydrolysate.
    Yan S; Tang H; Wang S; Xu L; Liu H; Guo Y; Yao J
    Bioprocess Biosyst Eng; 2014 Jun; 37(6):1095-103. PubMed ID: 24170020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing L-malate production of Aspergillus oryzae FMME218-37 by improving inorganic nitrogen utilization.
    Ding Q; Luo Q; Zhou J; Chen X; Liu L
    Appl Microbiol Biotechnol; 2018 Oct; 102(20):8739-8751. PubMed ID: 30109399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetate as substrate for L-malic acid production with Aspergillus oryzae DSM 1863.
    Kövilein A; Umpfenbach J; Ochsenreither K
    Biotechnol Biofuels; 2021 Feb; 14(1):48. PubMed ID: 33622386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes.
    Xu G; Chen X; Liu L; Jiang L
    Bioresour Technol; 2013 Nov; 148():91-6. PubMed ID: 24045196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of nitrogen and carbon sources on the production of ochratoxin A by ochratoxigenic strains of Aspergillus spp. isolated from grapes.
    Medina A; Mateo EM; Valle-Algarra FM; Mateo F; Mateo R; Jiménez M
    Int J Food Microbiol; 2008 Feb; 122(1-2):93-9. PubMed ID: 18164776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of malic acid production in Aspergillus oryzae under nitrogen starvation conditions.
    Knuf C; Nookaew I; Brown SH; McCulloch M; Berry A; Nielsen J
    Appl Environ Microbiol; 2013 Oct; 79(19):6050-8. PubMed ID: 23892740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double mutant of Aspergillus oryzae for improved production of L-dopa (3,4-dihydroxyphenyl-L-alanine) from L-tyrosine.
    Ali S; Haq IU; Qadeer MA; Rajoka MI
    Biotechnol Appl Biochem; 2005 Oct; 42(Pt 2):143-9. PubMed ID: 15727563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.