BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 24604822)

  • 21. Suppression of TLR2-induced IL-12, reactive oxygen species, and inducible nitric oxide synthase expression by Mycobacterium tuberculosis antigens expressed inside macrophages during the course of infection.
    Gupta D; Sharma S; Singhal J; Satsangi AT; Antony C; Natarajan K
    J Immunol; 2010 May; 184(10):5444-55. PubMed ID: 20385877
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression profiling of host pathogen interactions: how Mycobacterium tuberculosis and the macrophage adapt to one another.
    Schnappinger D; Schoolnik GK; Ehrt S
    Microbes Infect; 2006 Apr; 8(4):1132-40. PubMed ID: 16517202
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Macrophage heterogeneity and plasticity in tuberculosis.
    Khan A; Singh VK; Hunter RL; Jagannath C
    J Leukoc Biol; 2019 Aug; 106(2):275-282. PubMed ID: 30938876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mycobacterium tuberculosis H37Rv infection regulates alternative splicing in Macrophages.
    Zhang W; Niu C; Fu RY; Peng ZY
    Bioengineered; 2018 Jan; 9(1):203-208. PubMed ID: 29433383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of iron on the expression of cytokines in macrophages infected with Mycobacterium tuberculosis.
    Serafín-López J; Chacón-Salinas R; Muñoz-Cruz S; Enciso-Moreno JA; Estrada-Parra SA; Estrada-García I
    Scand J Immunol; 2004 Oct; 60(4):329-37. PubMed ID: 15379857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inflammation and the coagulation system in tuberculosis: Tissue Factor leads the dance.
    Caccamo N; Dieli F
    Eur J Immunol; 2016 Feb; 46(2):303-6. PubMed ID: 26763085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The PPE18 of Mycobacterium tuberculosis interacts with TLR2 and activates IL-10 induction in macrophage.
    Nair S; Ramaswamy PA; Ghosh S; Joshi DC; Pathak N; Siddiqui I; Sharma P; Hasnain SE; Mande SC; Mukhopadhyay S
    J Immunol; 2009 Nov; 183(10):6269-81. PubMed ID: 19880448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Mycobacterium bovis on monocyte-derived macrophages from bovine tuberculosis infection and healthy cattle.
    Wang Y; Zhou X; Lin J; Yin F; Xu L; Huang Y; Ding T; Zhao D
    FEMS Microbiol Lett; 2011 Aug; 321(1):30-6. PubMed ID: 21569079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulmonary infection with hypervirulent Mycobacteria reveals a crucial role for the P2X7 receptor in aggressive forms of tuberculosis.
    Amaral EP; Ribeiro SC; Lanes VR; Almeida FM; de Andrade MR; Bomfim CC; Salles EM; Bortoluci KR; Coutinho-Silva R; Hirata MH; Alvarez JM; Lasunskaia EB; D'Império-Lima MR
    PLoS Pathog; 2014 Jul; 10(7):e1004188. PubMed ID: 24991816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wnt6 is expressed in granulomatous lesions of Mycobacterium tuberculosis-infected mice and is involved in macrophage differentiation and proliferation.
    Schaale K; Brandenburg J; Kispert A; Leitges M; Ehlers S; Reiling N
    J Immunol; 2013 Nov; 191(10):5182-95. PubMed ID: 24123681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extracellular ATP and adenosine induce cell apoptosis of human hepatoma Li-7A cells via the A3 adenosine receptor.
    Wen LT; Knowles AF
    Br J Pharmacol; 2003 Nov; 140(6):1009-18. PubMed ID: 14530217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ATP stimulates human macrophages to kill intracellular virulent Mycobacterium tuberculosis via calcium-dependent phagosome-lysosome fusion.
    Kusner DJ; Barton JA
    J Immunol; 2001 Sep; 167(6):3308-15. PubMed ID: 11544319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytotoxic activity of nucleoside diphosphate kinase secreted from Mycobacterium tuberculosis.
    Chopra P; Singh A; Koul A; Ramachandran S; Drlica K; Tyagi AK; Singh Y
    Eur J Biochem; 2003 Feb; 270(4):625-34. PubMed ID: 12581202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microparticles released from Mycobacterium tuberculosis-infected human macrophages contain increased levels of the type I interferon inducible proteins including ISG15.
    Hare NJ; Chan B; Chan E; Kaufman KL; Britton WJ; Saunders BM
    Proteomics; 2015 Sep; 15(17):3020-9. PubMed ID: 26036210
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purinergic Signaling in Pulmonary Inflammation.
    Le TT; Berg NK; Harting MT; Li X; Eltzschig HK; Yuan X
    Front Immunol; 2019; 10():1633. PubMed ID: 31379836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tinkering with targeting nucleotide signaling for control of intracellular Leishmania parasites.
    Vijayamahantesh ; Vijayalaxmi
    Cytokine; 2019 Jul; 119():129-143. PubMed ID: 30909149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Innate immunity in tuberculosis: how the sensing of mycobacteria and tissue damage modulates macrophage death.
    Amaral EP; Lasunskaia EB; D'Império-Lima MR
    Microbes Infect; 2016 Jan; 18(1):11-20. PubMed ID: 26369715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biphasic Dynamics of Macrophage Immunometabolism during
    Shi L; Jiang Q; Bushkin Y; Subbian S; Tyagi S
    mBio; 2019 Mar; 10(2):. PubMed ID: 30914513
    [TBL] [Abstract][Full Text] [Related]  

  • 39. cAMP levels within Mycobacterium tuberculosis and Mycobacterium bovis BCG increase upon infection of macrophages.
    Bai G; Schaak DD; McDonough KA
    FEMS Immunol Med Microbiol; 2009 Jan; 55(1):68-73. PubMed ID: 19076221
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages.
    Tailleux L; Waddell SJ; Pelizzola M; Mortellaro A; Withers M; Tanne A; Castagnoli PR; Gicquel B; Stoker NG; Butcher PD; Foti M; Neyrolles O
    PLoS One; 2008 Jan; 3(1):e1403. PubMed ID: 18167562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.