These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 24605138)

  • 1. Recent applications of the divinylcyclopropane-cycloheptadiene rearrangement in organic synthesis.
    Krüger S; Gaich T
    Beilstein J Org Chem; 2014; 10():163-93. PubMed ID: 24605138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dienamine-Induced Divinylcyclopropane-Cycloheptadiene Rearrangements.
    Apel C; Hartmann SS; Lentz D; Christmann M
    Angew Chem Int Ed Engl; 2019 Apr; 58(15):5075-5079. PubMed ID: 30742738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the metal fragment on the aromaticity and synchronicity of the gold(i)-catalysed divinylcyclopropane-cycloheptadiene rearrangement.
    Sosa Carrizo ED; Fernández I
    Phys Chem Chem Phys; 2016 Apr; 18(17):11677-82. PubMed ID: 26626397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal agents. 3. Chemical modification of antibiotics from Polyangium cellulosum var. fulvum. A divinylcyclopropane-cycloheptadiene rearrangement.
    Connor DT; Klutchko S; von Strandtmann M
    J Antibiot (Tokyo); 1979 Apr; 32(4):368-70. PubMed ID: 112090
    [No Abstract]   [Full Text] [Related]  

  • 5. Total synthesis of gelsemoxonine.
    Shimokawa J; Harada T; Yokoshima S; Fukuyama T
    J Am Chem Soc; 2011 Nov; 133(44):17634-7. PubMed ID: 21980918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural Product Synthesis Enabled by Domino Processes Incorporating a 1,2-Rearrangement Step.
    Delayre B; Wang Q; Zhu J
    ACS Cent Sci; 2021 Apr; 7(4):559-569. PubMed ID: 34056086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability and thermal rearrangement of (E,E)-1,3-cycloheptadiene and trans-bicyclo[3.2.0]hept-6-ene.
    Qin C; Davis SR; Zhao Z; Magers DH
    J Phys Chem A; 2006 Feb; 110(5):2034-8. PubMed ID: 16451039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruthenium-catalyzed cyclopropanation of alkenes using propargylic carboxylates as precursors of vinylcarbenoids.
    Miki K; Ohe K; Uemura S
    J Org Chem; 2003 Oct; 68(22):8505-13. PubMed ID: 14575478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ring Rearrangement Metathesis in 7-Oxabicyclo[2.2.1]heptene (7-Oxanorbornene) Derivatives. Some Applications in Natural Product Chemistry.
    Roscales S; Plumet J
    Nat Prod Commun; 2017 May; 12(5):713-732. PubMed ID: 30496682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Modification of Lysine with 2-(2-Styrylcyclopropyl)ethanal.
    Apel C; Kasper MA; Stieger CE; Hackenberger CPR; Christmann M
    Org Lett; 2019 Dec; 21(24):10043-10047. PubMed ID: 31825637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. William von Eggers Doering's many research achievements during the first 65 years of his career in chemistry.
    Klärner FG; Jones M; Magid RM
    Acc Chem Res; 2009 Jan; 42(1):169-81. PubMed ID: 18729479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semibullvalene and diazasemibullvalene: recent advances in the synthesis, reaction chemistry, and synthetic applications.
    Zhang S; Zhang WX; Xi Z
    Acc Chem Res; 2015 Jul; 48(7):1823-31. PubMed ID: 26061608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [3,3]-Sigmatropic rearrangements: recent applications in the total synthesis of natural products.
    Ilardi EA; Stivala CE; Zakarian A
    Chem Soc Rev; 2009 Nov; 38(11):3133-48. PubMed ID: 19847347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radical Smiles Rearrangement: An Update.
    Allart-Simon I; Gérard S; Sapi J
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27399654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of the Wittig-Still Rearrangement in Organic Synthesis.
    Rycek L; Hudlicky T
    Angew Chem Int Ed Engl; 2017 May; 56(22):6022-6066. PubMed ID: 28211171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress toward the Enantioselective Synthesis of Curcusones A-D via a Divinylcyclopropane Rearrangement Strategy.
    Wright AC; Lee CW; Stoltz BM
    Org Lett; 2019 Dec; 21(23):9658-9662. PubMed ID: 31763859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "Biomimetic" Cascade Reactions in Organic Synthesis: Construction of 4-Oxatricyclo[4.3.1.0]decan-2-one Systems and Total Synthesis of 1-O-Methylforbesione via Tandem Claisen Rearrangement/Diels-Alder Reactions.
    Nicolaou KC; Li J
    Angew Chem Int Ed Engl; 2001 Nov; 40(22):4264-4268. PubMed ID: 29712093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Development of domino reactions based on skeletal rearrangement].
    Sugimoto K
    Yakugaku Zasshi; 2011; 131(11):1563-73. PubMed ID: 22041694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Unexpected Ireland-Claisen Rearrangement Cascade During the Synthesis of the Tricyclic Core of Curcusone C: Mechanistic Elucidation by Trial-and-Error and Automatic Artificial Force-Induced Reaction (AFIR) Computations.
    Lee CW; Taylor BLH; Petrova GP; Patel A; Morokuma K; Houk KN; Stoltz BM
    J Am Chem Soc; 2019 May; 141(17):6995-7004. PubMed ID: 30907087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereoselective construction of quaternary carbon stereocenters via a semipinacol rearrangement strategy.
    Wang B; Tu YQ
    Acc Chem Res; 2011 Nov; 44(11):1207-22. PubMed ID: 21728380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.