These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 24605214)

  • 21. Recent advances in pediatric metabolic bone disease: the consequences of altered phosphate homeostasis in renal insufficiency and hypophosphatemic vitamin D-resistant rickets.
    Pettifor JM
    Bone Miner; 1990 Jun; 9(3):199-214. PubMed ID: 2163713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FGF23-FGF Receptor/Klotho Pathway as a New Drug Target for Disorders of Bone and Mineral Metabolism.
    Fukumoto S
    Calcif Tissue Int; 2016 Apr; 98(4):334-40. PubMed ID: 26126937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. X-Linked Hypophosphatemia and FGF23-Related Hypophosphatemic Diseases: Prospect for New Treatment.
    Kinoshita Y; Fukumoto S
    Endocr Rev; 2018 Jun; 39(3):274-291. PubMed ID: 29381780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium and Bone Metabolism Indices.
    Song L
    Adv Clin Chem; 2017; 82():1-46. PubMed ID: 28939209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlations of serum concentrations of 1,25-dihydroxyvitamin D, phosphorus, and parathyroid hormone in tumoral calcinosis.
    Lyles KW; Halsey DL; Friedman NE; Lobaugh B
    J Clin Endocrinol Metab; 1988 Jul; 67(1):88-92. PubMed ID: 3379139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of vitamin D replacement therapy on serum FGF23 concentrations in vitamin D-deficient women in short term.
    Uzum AK; Salman S; Telci A; Boztepe H; Tanakol R; Alagol F; Ozbey NC
    Eur J Endocrinol; 2010 Nov; 163(5):825-31. PubMed ID: 20732956
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Osteo-renal cross-talk and phosphate metabolism by the FGF23-Klotho system.
    Ohnishi M; Razzaque MS
    Contrib Nephrol; 2013; 180():1-13. PubMed ID: 23652546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [FGF23 and bone metabolism].
    Ito N; Fukumoto S
    Clin Calcium; 2005 Jul; 15(7):43-8. PubMed ID: 15995295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PTH and FGF23 Exert Interdependent Effects on Renal Phosphate Handling: Evidence From Patients With Hypoparathyroidism and Hyperphosphatemic Familial Tumoral Calcinosis Treated With Synthetic Human PTH 1-34.
    Ovejero D; Hartley IR; de Castro Diaz LF; Theng E; Li X; Gafni RI; Collins MT
    J Bone Miner Res; 2022 Feb; 37(2):179-184. PubMed ID: 34464000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphate-sensing and regulatory mechanism of FGF23 production.
    Takashi Y; Fukumoto S
    J Endocrinol Invest; 2020 Jul; 43(7):877-883. PubMed ID: 32140858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Vascular Calcification - Pathological Mechanism and Clinical Application - . Regulation of mineral metabolism and mineralization by FGF23].
    Fukumoto S
    Clin Calcium; 2015 May; 25(5):687-91. PubMed ID: 25926572
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FGF23 and Phosphate Wasting Disorders.
    Huang X; Jiang Y; Xia W
    Bone Res; 2013 Jun; 1(2):120-32. PubMed ID: 26273497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiology of the Calcium-Parathyroid Hormone-Vitamin D Axis.
    Goltzman D; Mannstadt M; Marcocci C
    Front Horm Res; 2018; 50():1-13. PubMed ID: 29597231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism.
    Shimada T; Kakitani M; Yamazaki Y; Hasegawa H; Takeuchi Y; Fujita T; Fukumoto S; Tomizuka K; Yamashita T
    J Clin Invest; 2004 Feb; 113(4):561-8. PubMed ID: 14966565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Regulatory mechanism of circulating inorganic phosphate].
    Michigami T
    Clin Calcium; 2016 Feb; 26(2):193-8. PubMed ID: 26813498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting Fibroblast Growth Factor 23 Signaling with Antibodies and Inhibitors, Is There a Rationale?
    Fukumoto S
    Front Endocrinol (Lausanne); 2018; 9():48. PubMed ID: 29515522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular Control of Phosphorus Homeostasis and Precision Treatment of Hypophosphatemic Disorders.
    Weber TJ; Quarles LD
    Curr Mol Biol Rep; 2019 Jun; 5(2):75-85. PubMed ID: 31871877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphate-Sensing.
    Takashi Y; Fukumoto S
    Adv Exp Med Biol; 2022; 1362():27-35. PubMed ID: 35288870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of a role for 1,25-dihydroxyvitamin D3 in the pathogenesis and treatment of X-linked hypophosphatemic rickets and osteomalacia.
    Drezner MK; Lyles KW; Haussler MR; Harrelson JM
    J Clin Invest; 1980 Nov; 66(5):1020-32. PubMed ID: 6253520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone-kidney axis in systemic phosphate turnover.
    Razzaque MS
    Arch Biochem Biophys; 2014 Nov; 561():154-8. PubMed ID: 24997362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.