These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 24605286)
1. Confinement dependence of electro-catalysts for hydrogen evolution from water splitting. Lindgren M; Panas I Beilstein J Nanotechnol; 2014; 5():195-201. PubMed ID: 24605286 [TBL] [Abstract][Full Text] [Related]
2. Interface-confined oxide nanostructures for catalytic oxidation reactions. Fu Q; Yang F; Bao X Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033 [TBL] [Abstract][Full Text] [Related]
3. Iridium-Tungsten Alloy Nanodendrites as pH-Universal Water-Splitting Electrocatalysts. Lv F; Feng J; Wang K; Dou Z; Zhang W; Zhou J; Yang C; Luo M; Yang Y; Li Y; Gao P; Guo S ACS Cent Sci; 2018 Sep; 4(9):1244-1252. PubMed ID: 30276259 [TBL] [Abstract][Full Text] [Related]
4. Low-temperature Synthesis of Heterostructures of Transition Metal Dichalcogenide Alloys (W Lei Y; Pakhira S; Fujisawa K; Wang X; Iyiola OO; Perea López N; Laura Elías A; Pulickal Rajukumar L; Zhou C; Kabius B; Alem N; Endo M; Lv R; Mendoza-Cortes JL; Terrones M ACS Nano; 2017 May; 11(5):5103-5112. PubMed ID: 28471652 [TBL] [Abstract][Full Text] [Related]
5. Understanding electro-catalysis by using density functional theory. Chen ZW; Chen LX; Wen Z; Jiang Q Phys Chem Chem Phys; 2019 Nov; 21(43):23782-23802. PubMed ID: 31651005 [TBL] [Abstract][Full Text] [Related]
6. What can density functional theory tell us about artificial catalytic water splitting? Mavros MG; Tsuchimochi T; Kowalczyk T; McIsaac A; Wang LP; Voorhis TV Inorg Chem; 2014 Jul; 53(13):6386-97. PubMed ID: 24694041 [TBL] [Abstract][Full Text] [Related]
7. Large-Scale, Low-Cost, and High-Efficiency Water-Splitting System for Clean H Peng Y; Jiang K; Hill W; Lu Z; Yao H; Wang H ACS Appl Mater Interfaces; 2019 Jan; 11(4):3971-3977. PubMed ID: 30604959 [TBL] [Abstract][Full Text] [Related]
8. A CuNi Alloy-Carbon Layer Core-Shell Catalyst for Highly Efficient Conversion of Aqueous Formaldehyde to Hydrogen at Room Temperature. Zhou Z; Ng YH; Xu S; Yang S; Gao Q; Cai X; Liao J; Fang Y; Zhang S ACS Appl Mater Interfaces; 2021 Aug; 13(31):37299-37307. PubMed ID: 34324293 [TBL] [Abstract][Full Text] [Related]
9. Designing transition metal alloy nanoparticles embedded hierarchically porous carbon nanosheets as high-efficiency electrocatalysts toward full water splitting. Liu T; Li M; Bo X; Zhou M J Colloid Interface Sci; 2019 Mar; 537():280-294. PubMed ID: 30448649 [TBL] [Abstract][Full Text] [Related]
10. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts. Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456 [TBL] [Abstract][Full Text] [Related]
11. Inverse gas chromatographic investigation of the effect of hydrogen in carbon monoxide adsorption over silica supported Rh and Pt-Rh alloy catalysts, under hydrogen-rich conditions. Gavril D; Loukopoulos V; Georgaka A; Gabriel A; Karaiskakis G J Chromatogr A; 2005 Sep; 1087(1-2):158-68. PubMed ID: 16130709 [TBL] [Abstract][Full Text] [Related]
12. Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis. Ryoo R; Kim J; Jo C; Han SW; Kim JC; Park H; Han J; Shin HS; Shin JW Nature; 2020 Sep; 585(7824):221-224. PubMed ID: 32908262 [TBL] [Abstract][Full Text] [Related]
13. Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur. Chen CL; Wang CH; Weng HS Chemosphere; 2004 Aug; 56(5):425-31. PubMed ID: 15212907 [TBL] [Abstract][Full Text] [Related]
14. Two-Dimensional Graphdiyne-Confined Platinum Catalyst for Hydrogen Evolution and Oxygen Reduction Reactions. Chen LX; Jiang M; Lu Z; Gao C; Chen ZW; Singh CV ACS Appl Mater Interfaces; 2021 Oct; 13(40):47541-47548. PubMed ID: 34582181 [TBL] [Abstract][Full Text] [Related]
15. Nesting Co Chen J; Ge Y; Feng Q; Zhuang P; Chu H; Cao Y; Smith WR; Dong P; Ye M; Shen J ACS Appl Mater Interfaces; 2019 Mar; 11(9):9002-9010. PubMed ID: 30620166 [TBL] [Abstract][Full Text] [Related]
16. Hierarchical CoP Nanostructures on Nickel Foam as Efficient Bifunctional Catalysts for Water Splitting. Cao H; Li Z; Xie Y; Xiao F; Wang H; Wang X; Pan K; Cabot A ChemSusChem; 2021 Feb; 14(4):1094-1102. PubMed ID: 33369250 [TBL] [Abstract][Full Text] [Related]
17. MXenes as Superexcellent Support for Confining Single Atom: Properties, Synthesis, and Electrocatalytic Applications. Zhang M; Lai C; Li B; Liu S; Huang D; Xu F; Liu X; Qin L; Fu Y; Li L; Yi H; Chen L Small; 2021 Jul; 17(29):e2007113. PubMed ID: 34047018 [TBL] [Abstract][Full Text] [Related]
18. Three-Dimensional Nanoporous Co Tan Y; Luo M; Liu P; Cheng C; Han J; Watanabe K; Chen M ACS Appl Mater Interfaces; 2019 Jan; 11(4):3880-3888. PubMed ID: 30614681 [TBL] [Abstract][Full Text] [Related]
19. Space-Confined Earth-Abundant Bifunctional Electrocatalyst for High-Efficiency Water Splitting. Tang Y; Fang X; Zhang X; Fernandes G; Yan Y; Yan D; Xiang X; He J ACS Appl Mater Interfaces; 2017 Oct; 9(42):36762-36771. PubMed ID: 28991435 [TBL] [Abstract][Full Text] [Related]
20. Breaking Platinum Nanoparticles to Single-Atomic Pt-C Yan J; Ji Y; Batmunkh M; An P; Zhang J; Fu Y; Jia B; Li Y; Liu S; Ye J; Ma T Angew Chem Int Ed Engl; 2021 Feb; 60(5):2541-2547. PubMed ID: 33241666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]