These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24605602)

  • 1. [Mithochondria signaling in adaptation to hypoxia].
    Luk'ianova LD
    Fiziol Zh (1994); 2013; 59(6):141-54. PubMed ID: 24605602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Current issues of adaptation to hypoxia. Signal mechanisms and their role in system regulation].
    Lukianova LD
    Patol Fiziol Eksp Ter; 2011; (1):3-19. PubMed ID: 21692223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria-controlled signaling mechanisms of brain protection in hypoxia.
    Lukyanova LD; Kirova YI
    Front Neurosci; 2015; 9():320. PubMed ID: 26483619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Succinate in Regulation of Immediate HIF-1α Expression in Hypoxia.
    Lukyanova LD; Kirova YI; Germanova EL
    Bull Exp Biol Med; 2018 Jan; 164(3):298-303. PubMed ID: 29308570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting Complex I activity.
    Tello D; Balsa E; Acosta-Iborra B; Fuertes-Yebra E; Elorza A; Ordóñez Á; Corral-Escariz M; Soro I; López-Bernardo E; Perales-Clemente E; Martínez-Ruiz A; Enríquez JA; Aragonés J; Cadenas S; Landázuri MO
    Cell Metab; 2011 Dec; 14(6):768-79. PubMed ID: 22100406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Mitochondrial Enzymes, Succinate-Coupled Signaling Pathways and Mitochondrial Ultrastructure in the Formation of Urgent Adaptation to Acute Hypoxia in the Myocardium.
    Germanova E; Khmil N; Pavlik L; Mikheeva I; Mironova G; Lukyanova L
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type II Fp of human mitochondrial respiratory complex II and its role in adaptation to hypoxia and nutrition-deprived conditions.
    Sakai C; Tomitsuka E; Miyagishi M; Harada S; Kita K
    Mitochondrion; 2013 Nov; 13(6):602-9. PubMed ID: 24008124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia and aerobic metabolism adaptations of human endothelial cells.
    Koziel A; Jarmuszkiewicz W
    Pflugers Arch; 2017 Jun; 469(5-6):815-827. PubMed ID: 28176017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of hypoxia on dynamics of HIF-1alpha level in the cerebral cortex and development of adaptation in rats with different resistance to hypoxia].
    Kirova IuI
    Patol Fiziol Eksp Ter; 2012; (3):51-5. PubMed ID: 23072112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Phenotypic characteristics of factor expression induced by hypoxia and redox status of the rat neocortical cells at different stages of adaptation to hypoxia].
    Kirova IuI; Germanova ÉL; Luk'ianova LD
    Fiziol Zh (1994); 2013; 59(6):98-110. PubMed ID: 24605597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial complex III regulates hypoxic activation of HIF.
    Klimova T; Chandel NS
    Cell Death Differ; 2008 Apr; 15(4):660-6. PubMed ID: 18219320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of hypoxia-inducible factor-1 subunits from Ascaris suum - a parasitic nematode highly adapted to changes of oxygen conditions during its life cycle.
    Goto M; Amino H; Nakajima M; Tsuji N; Sakamoto K; Kita K
    Gene; 2013 Mar; 516(1):39-47. PubMed ID: 23268347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Molecular mechanisms of tissue hypoxia and organism adaptation].
    Luk'ianova LD
    Fiziol Zh (1994); 2003; 49(3):17-35. PubMed ID: 12918247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G-protein-coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery.
    Hamel D; Sanchez M; Duhamel F; Roy O; Honoré JC; Noueihed B; Zhou T; Nadeau-Vallée M; Hou X; Lavoie JC; Mitchell G; Mamer OA; Chemtob S
    Arterioscler Thromb Vasc Biol; 2014 Feb; 34(2):285-93. PubMed ID: 24285580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide and superoxide: interference with hypoxic signaling.
    Brüne B; Zhou J
    Cardiovasc Res; 2007 Jul; 75(2):275-82. PubMed ID: 17412315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia.
    Guzy RD; Schumacker PT
    Exp Physiol; 2006 Sep; 91(5):807-19. PubMed ID: 16857720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensors, transmitters, and targets in mitochondrial oxygen shortage-a hypoxia-inducible factor relay story.
    Dehne N; Brüne B
    Antioxid Redox Signal; 2014 Jan; 20(2):339-52. PubMed ID: 22794181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biology of HIF-1alpha.
    Weidemann A; Johnson RS
    Cell Death Differ; 2008 Apr; 15(4):621-7. PubMed ID: 18259201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption.
    Papandreou I; Cairns RA; Fontana L; Lim AL; Denko NC
    Cell Metab; 2006 Mar; 3(3):187-97. PubMed ID: 16517406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac complex II activity is enhanced by fat and mediates greater mitochondrial oxygen consumption following hypoxic re-oxygenation.
    Zhu SC; Chen C; Wu YN; Ahmed M; Kitmitto A; Greenstein AS; Kim SJ; Shao YF; Zhang YH
    Pflugers Arch; 2020 Mar; 472(3):367-374. PubMed ID: 32078030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.