These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 24605761)

  • 1. Ruthenium-catalyzed reduction of carbon dioxide to formaldehyde.
    Bontemps S; Vendier L; Sabo-Etienne S
    J Am Chem Soc; 2014 Mar; 136(11):4419-25. PubMed ID: 24605761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why and How Carbon Dioxide Conversion to Methanol Happens on Functionalized Semiconductor Photoelectrodes.
    Xu S; Li L; Carter EA
    J Am Chem Soc; 2018 Dec; 140(48):16749-16757. PubMed ID: 30398873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels.
    Qiao J; Liu Y; Hong F; Zhang J
    Chem Soc Rev; 2014 Jan; 43(2):631-75. PubMed ID: 24186433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trapping formaldehyde in the homogeneous catalytic reduction of carbon dioxide.
    Bontemps S; Sabo-Etienne S
    Angew Chem Int Ed Engl; 2013 Sep; 52(39):10253-5. PubMed ID: 23873696
    [No Abstract]   [Full Text] [Related]  

  • 5. Tandem amine and ruthenium-catalyzed hydrogenation of CO2 to methanol.
    Rezayee NM; Huff CA; Sanford MS
    J Am Chem Soc; 2015 Jan; 137(3):1028-31. PubMed ID: 25594380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional theory mechanistic study of the reduction of CO2 to CH4 catalyzed by an ammonium hydridoborate ion pair: CO2 activation via formation of a formic acid entity.
    Wen M; Huang F; Lu G; Wang ZX
    Inorg Chem; 2013 Oct; 52(20):12098-107. PubMed ID: 24087841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights.
    Cole EB; Lakkaraju PS; Rampulla DM; Morris AJ; Abelev E; Bocarsly AB
    J Am Chem Soc; 2010 Aug; 132(33):11539-51. PubMed ID: 20666494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic study of hydrogen transfer to imines from a hydroxycyclopentadienyl ruthenium hydride. Experimental support for a mechanism involving coordination of imine to ruthenium prior to hydrogen transfer.
    Samec JS; Ell AH; Aberg JB; Privalov T; Eriksson L; Bäckvall JE
    J Am Chem Soc; 2006 Nov; 128(44):14293-305. PubMed ID: 17076502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Ruthenium-Catalyzed Transformation of Carbon Dioxide: An Alternative Approach toward Formaldehyde.
    Siebert M; Seibicke M; Siegle AF; Kräh S; Trapp O
    J Am Chem Soc; 2019 Jan; 141(1):334-341. PubMed ID: 30525577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-yield electrochemical production of formaldehyde from CO2 and seawater.
    Nakata K; Ozaki T; Terashima C; Fujishima A; Einaga Y
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):871-4. PubMed ID: 24281847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective reduction of carbon dioxide to bis(silyl)acetal catalyzed by a PBP-supported nickel complex.
    Ríos P; Curado N; López-Serrano J; Rodríguez A
    Chem Commun (Camb); 2016 Feb; 52(10):2114-7. PubMed ID: 26692373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic reduction of carbon dioxide using sol-gel derived titania-supported CoPc catalysts.
    Liu S; Zhao Z; Wang Z
    Photochem Photobiol Sci; 2007 Jun; 6(6):695-700. PubMed ID: 17549273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intramolecular trapping of an intermediate in the reduction of imines by a hydroxycyclopentadienyl ruthenium hydride: support for a concerted outer sphere mechanism.
    Casey CP; Clark TB; Guzei IA
    J Am Chem Soc; 2007 Sep; 129(38):11821-7. PubMed ID: 17760443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen liberation from the hydrolytic dehydrogenation of dimethylamine-borane at room temperature by using a novel ruthenium nanocatalyst.
    Caliskan S; Zahmakiran M; Durap F; Özkar S
    Dalton Trans; 2012 Apr; 41(16):4976-84. PubMed ID: 22410969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pd/C-catalyzed direct formylation of aromatic iodides to aryl aldehydes using carbon dioxide as a C1 resource.
    Yu B; Zhao Y; Zhang H; Xu J; Hao L; Gao X; Liu Z
    Chem Commun (Camb); 2014 Mar; 50(18):2330-3. PubMed ID: 24448219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Conversion of Carbon Dioxide to Formaldehyde via a Bis(silyl)acetal: Incorporation of Isotopically Labeled C
    Rauch M; Strater Z; Parkin G
    J Am Chem Soc; 2019 Nov; 141(44):17754-17762. PubMed ID: 31638772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Anaerobic acetate formation from CH3OH, CH2O, HCOOH, Na2CO3 by cellular suspensions of a thermophilic culture of Methanobacillus kuzneceovii].
    Pantskhava ES
    Dokl Akad Nauk SSSR; 1969; 188(1):215-8. PubMed ID: 5397556
    [No Abstract]   [Full Text] [Related]  

  • 18. Experimental analysis of the catalytic cycle of the borane-promoted imine reduction with hydrosilanes: spectroscopic detection of unexpected intermediates and a refined mechanism.
    Hermeke J; Mewald M; Oestreich M
    J Am Chem Soc; 2013 Nov; 135(46):17537-46. PubMed ID: 24180217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Borane-mediated carbon dioxide reduction at ruthenium: formation of C1 and C2 compounds.
    Bontemps S; Vendier L; Sabo-Etienne S
    Angew Chem Int Ed Engl; 2012 Feb; 51(7):1671-4. PubMed ID: 22241554
    [No Abstract]   [Full Text] [Related]  

  • 20. Synthesis of ruthenium(II) complexes containing hydroxymethylphosphines and their catalytic activities for hydrogenation of supercritical carbon dioxide.
    Kayaki Y; Shimokawatoko Y; Ikariya T
    Inorg Chem; 2007 Jul; 46(14):5791-7. PubMed ID: 17567002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.