These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24605784)

  • 1. Refinements to the Utah-Washington mechanism of electron capture dissociation.
    Anusiewicz I; Skurski P; Simons J
    J Phys Chem B; 2014 Jul; 118(28):7892-901. PubMed ID: 24605784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dipole and Coulomb forces in electron capture dissociation and electron transfer dissociation mass spectroscopy.
    Świerszcz I; Skurski P; Simons J
    J Phys Chem A; 2012 Feb; 116(7):1828-37. PubMed ID: 22283160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical and computational studies of intramolecular electron transfer pertinent to electron transfer and electron capture dissociation mass spectrometry.
    Neff D; Simons J
    J Phys Chem A; 2010 Jan; 114(3):1309-23. PubMed ID: 19731901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron attachment step in electron capture dissociation (ECD) and electron transfer dissociation (ETD).
    Anusiewicz I; Berdys-Kochanska J; Simons J
    J Phys Chem A; 2005 Jul; 109(26):5801-13. PubMed ID: 16833914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical model for rates of electron attachment and intramolecular electron transfer in electron transfer dissociation mass spectrometry.
    Simons J
    J Am Chem Soc; 2010 May; 132(20):7074-85. PubMed ID: 20438123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of excited Rydberg States in electron transfer dissociation.
    Sobczyk M; Simons J
    J Phys Chem B; 2006 Apr; 110(14):7519-27. PubMed ID: 16599533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coulomb-assisted dissociative electron attachment: application to a model peptide.
    Sobczyk M; Anusiewicz I; Berdys-Kochanska J; Sawicka A; Skurski P; Simons J
    J Phys Chem A; 2005 Jan; 109(1):250-8. PubMed ID: 16839114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a general mechanism of electron capture dissociation.
    Syrstad EA; Turecek F
    J Am Soc Mass Spectrom; 2005 Feb; 16(2):208-24. PubMed ID: 15694771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do not forget the Rydberg orbitals.
    Simons J
    J Chem Phys; 2022 Mar; 156(10):100901. PubMed ID: 35291772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-Cα Bond Cleavage of Zinc-Polyhistidine Complexes in Electron Transfer Dissociation Mediated by Zwitterion Formation: Experimental Evidence and Theoretical Analysis of the Utah-Washington Model.
    Asakawa D; Yamashita A; Kawai S; Takeuchi T; Wada Y
    J Phys Chem B; 2016 Feb; 120(5):891-901. PubMed ID: 26673038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Where does the electron go? Electron distribution and reactivity of peptide cation radicals formed by electron transfer in the gas phase.
    Turecek F; Chen X; Hao C
    J Am Chem Soc; 2008 Jul; 130(27):8818-33. PubMed ID: 18597436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The histidine effect. Electron transfer and capture cause different dissociations and rearrangements of histidine peptide cation-radicals.
    Turecek F; Chung TW; Moss CL; Wyer JA; Ehlerding A; Holm AI; Zettergren H; Nielsen SB; Hvelplund P; Chamot-Rooke J; Bythell B; Paizs B
    J Am Chem Soc; 2010 Aug; 132(31):10728-40. PubMed ID: 20681705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dipole-guided electron capture causes abnormal dissociations of phosphorylated pentapeptides.
    Moss CL; Chung TW; Wyer JA; Nielsen SB; Hvelplund P; Tureček F
    J Am Soc Mass Spectrom; 2011 Apr; 22(4):731-51. PubMed ID: 21472611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating electron transfer attachment to a positively charged model peptide.
    Anusiewicz I; Berdys-Kochanska J; Skurski P; Simons J
    J Phys Chem A; 2006 Feb; 110(4):1261-6. PubMed ID: 16435786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The arginine anomaly: arginine radicals are poor hydrogen atom donors in electron transfer induced dissociations.
    Chen X; Turecek F
    J Am Chem Soc; 2006 Sep; 128(38):12520-30. PubMed ID: 16984203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive analysis of Gly-Leu-Gly-Gly-Lys peptide dication structures and cation-radical dissociations following electron transfer: from electron attachment to backbone cleavage, ion-molecule complexes, and fragment separation.
    Pepin R; Laszlo KJ; Peng B; Marek A; Bush MF; Tureček F
    J Phys Chem A; 2014 Jan; 118(1):308-24. PubMed ID: 24328203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the viability of heterolytic peptide N-C(α) bond cleavage in electron capture and transfer dissociation mass spectrometry.
    Wodrich MD; Zhurov KO; Corminboeuf C; Tsybin YO
    J Phys Chem B; 2014 Mar; 118(11):2985-92. PubMed ID: 24559292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of metal ions on radical type and proton-coupled electron transfer channel: sigma-radical vs pi-radical and sigma-channel vs pi-channel in the imide units.
    Chen X; Xing D; Zhang L; Cukier RI; Bu Y
    J Comput Chem; 2009 Dec; 30(16):2694-705. PubMed ID: 19399771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finding Valence Antibonding Levels while Avoiding Rydberg, Pseudo-continuum, and Dipole-Bound Orbitals.
    Anusiewicz I; Skurski P; Simons J
    J Am Chem Soc; 2022 Jun; 144(25):11348-11363. PubMed ID: 35699697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inelastic electron interaction (attachment/ionization) with deoxyribose.
    Ptasińska S; Denifl S; Scheier P; Märk TD
    J Chem Phys; 2004 May; 120(18):8505-11. PubMed ID: 15267776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.