These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 24605849)

  • 1. Epigenetics, chromatin and genome organization: recent advances from the ENCODE project.
    Siggens L; Ekwall K
    J Intern Med; 2014 Sep; 276(3):201-14. PubMed ID: 24605849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution profiling of histone methylations in the human genome.
    Barski A; Cuddapah S; Cui K; Roh TY; Schones DE; Wang Z; Wei G; Chepelev I; Zhao K
    Cell; 2007 May; 129(4):823-37. PubMed ID: 17512414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping.
    Roh TY; Cuddapah S; Zhao K
    Genes Dev; 2005 Mar; 19(5):542-52. PubMed ID: 15706033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Definition of Promoter and Enhancer Usage during Neural Induction of Human Embryonic Stem Cells.
    Poletti V; Delli Carri A; Malagoli Tagliazucchi G; Faedo A; Petiti L; Mazza EM; Peano C; De Bellis G; Bicciato S; Miccio A; Cattaneo E; Mavilio F
    PLoS One; 2015; 10(5):e0126590. PubMed ID: 25978676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CpG island mapping by epigenome prediction.
    Bock C; Walter J; Paulsen M; Lengauer T
    PLoS Comput Biol; 2007 Jun; 3(6):e110. PubMed ID: 17559301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular biology. Genetic events that shape the cancer epigenome.
    Ryan RJ; Bernstein BE
    Science; 2012 Jun; 336(6088):1513-4. PubMed ID: 22723401
    [No Abstract]   [Full Text] [Related]  

  • 7. Histone modifications in zebrafish development.
    Cunliffe VT
    Methods Cell Biol; 2016; 135():361-85. PubMed ID: 27443936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Future potential of the Human Epigenome Project.
    Eckhardt F; Beck S; Gut IG; Berlin K
    Expert Rev Mol Diagn; 2004 Sep; 4(5):609-18. PubMed ID: 15347255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cracking the ENCODE: from transcription to therapeutics.
    Mehta G; Jalan R; Mookerjee RP
    Hepatology; 2013 Jun; 57(6):2532-5. PubMed ID: 23609523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disease-associated variants in different categories of disease located in distinct regulatory elements.
    Ma M; Ru Y; Chuang LS; Hsu NY; Shi LS; Hakenberg J; Cheng WY; Uzilov A; Ding W; Glicksberg BS; Chen R
    BMC Genomics; 2015; 16 Suppl 8(Suppl 8):S3. PubMed ID: 26110593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases.
    Wilson AG
    J Periodontol; 2008 Aug; 79(8 Suppl):1514-9. PubMed ID: 18673005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome.
    Heintzman ND; Stuart RK; Hon G; Fu Y; Ching CW; Hawkins RD; Barrera LO; Van Calcar S; Qu C; Ching KA; Wang W; Weng Z; Green RD; Crawford GE; Ren B
    Nat Genet; 2007 Mar; 39(3):311-8. PubMed ID: 17277777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method to predict regulatory regions based on histone mark landscapes in macrophages.
    Nagy G; Dániel B; Jónás D; Nagy L; Barta E
    Immunobiology; 2013 Nov; 218(11):1416-27. PubMed ID: 23973299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription factor binding dynamics during human ES cell differentiation.
    Tsankov AM; Gu H; Akopian V; Ziller MJ; Donaghey J; Amit I; Gnirke A; Meissner A
    Nature; 2015 Feb; 518(7539):344-9. PubMed ID: 25693565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide epigenetic analysis of human pluripotent stem cells by ChIP and ChIP-Seq.
    Hitchler MJ; Rice JC
    Methods Mol Biol; 2011; 767():253-67. PubMed ID: 21822881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.
    Hon G; Ren B; Wang W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale chromatin profiling of gastric adenocarcinoma reveals cancer-associated cryptic promoters and somatically acquired regulatory elements.
    Muratani M; Deng N; Ooi WF; Lin SJ; Xing M; Xu C; Qamra A; Tay ST; Malik S; Wu J; Lee MH; Zhang S; Tan LL; Chua H; Wong WK; Ong HS; Ooi LL; Chow PK; Chan WH; Soo KC; Goh LK; Rozen S; Teh BT; Yu Q; Ng HH; Tan P
    Nat Commun; 2014 Jul; 5():4361. PubMed ID: 25008978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chimpanzee epigenome project?
    Peedicayil J
    Med Hypotheses; 2006; 66(6):1250-1. PubMed ID: 16483727
    [No Abstract]   [Full Text] [Related]  

  • 19. An integrated encyclopedia of DNA elements in the human genome.
    ENCODE Project Consortium
    Nature; 2012 Sep; 489(7414):57-74. PubMed ID: 22955616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myc-binding-site recognition in the human genome is determined by chromatin context.
    Guccione E; Martinato F; Finocchiaro G; Luzi L; Tizzoni L; Dall' Olio V; Zardo G; Nervi C; Bernard L; Amati B
    Nat Cell Biol; 2006 Jul; 8(7):764-70. PubMed ID: 16767079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.