These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24605932)

  • 1. Plasmon-enhanced Raman scattering by carbon nanotubes optically coupled with near-field cavities.
    Heeg S; Oikonomou A; Fernandez-Garcia R; Lehmann C; Maier SA; Vijayaraghavan A; Reich S
    Nano Lett; 2014; 14(4):1762-8. PubMed ID: 24605932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonant, Plasmonic Raman Enhancement of α-6T Molecules Encapsulated in Carbon Nanotubes.
    Wasserroth S; Heeg S; Mueller NS; Kusch P; Hübner U; Gaufrès E; Tang NY; Martel R; Vijayaraghavan A; Reich S
    J Phys Chem C Nanomater Interfaces; 2019 Apr; 123(16):10578-10585. PubMed ID: 32064011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing hotspots of plasmon-enhanced Raman scattering by nanomanipulation of carbon nanotubes.
    Heeg S; Clark N; Vijayaraghavan A
    Nanotechnology; 2018 Nov; 29(46):465710. PubMed ID: 30251709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Crystals for Strong Light-Matter Coupling in Carbon Nanotubes.
    Zakharko Y; Graf A; Zaumseil J
    Nano Lett; 2016 Oct; 16(10):6504-6510. PubMed ID: 27661764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic lens focused longitudinal field excitation for tip-enhanced Raman spectroscopy.
    Zhang M; Wang J
    Nanoscale Res Lett; 2015; 10():189. PubMed ID: 25977661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-enhanced Raman scattering on single-wall carbon nanotubes.
    Kneipp K; Kneipp H; Dresselhaus MS; Lefrant S
    Philos Trans A Math Phys Eng Sci; 2004 Nov; 362(1824):2361-73. PubMed ID: 15482983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tip-enhanced Raman spectroscopy based on plasmonic lens excitation and experimental detection.
    Zhang M; Wang J; Tian Q
    Opt Express; 2013 Apr; 21(8):9414-21. PubMed ID: 23609652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermolecular Interaction between Single-Walled Carbon Nanotubes and Encapsulated Molecules Studied by Polarization Resonance Raman Microscopy.
    Saito Y; Kondo T; Harada S; Kitaura R; Balois-Oguchi MV; Hayazawa N
    J Phys Chem B; 2023 Aug; 127(30):6726-6733. PubMed ID: 37474256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate.
    Zhang J; Fan T; Zhang X; Lai C; Zhu Y
    Appl Opt; 2014 Feb; 53(6):1159-65. PubMed ID: 24663316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles.
    Yashchenok A; Masic A; Gorin D; Inozemtseva O; Shim BS; Kotov N; Skirtach A; Möhwald H
    Small; 2015 Mar; 11(11):1320-7. PubMed ID: 25367373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon enhanced Raman scattering effect for an atom near a carbon nanotube.
    Bondarev IV
    Opt Express; 2015 Feb; 23(4):3971-84. PubMed ID: 25836436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsically ultrastrong plasmon-exciton interactions in crystallized films of carbon nanotubes.
    Ho PH; Farmer DB; Tulevski GS; Han SJ; Bishop DM; Gignac LM; Bucchignano J; Avouris P; Falk AL
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12662-12667. PubMed ID: 30459274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of the Giant Enhanced Raman Scattering by Sulfur Chains Encapsulated inside Single-Wall Carbon Nanotubes.
    Nascimento VV; Neves WQ; Alencar RS; Li G; Fu C; Haddon RC; Bekyarova E; Guo J; Alexandre SS; Nunes RW; Souza Filho AG; Fantini C
    ACS Nano; 2021 May; 15(5):8574-8582. PubMed ID: 33900719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution near-field Raman microscopy of single-walled carbon nanotubes.
    Hartschuh A; Sánchez EJ; Xie XS; Novotny L
    Phys Rev Lett; 2003 Mar; 90(9):095503. PubMed ID: 12689234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysing one isolated single walled carbon nanotube in the near-field domain with selective nanovolume Raman spectroscopy.
    Atalay H; Lefrant S
    J Nanosci Nanotechnol; 2004 Sep; 4(7):749-61. PubMed ID: 15570957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique Electronic Excitations at Highly Localized Plasmonic Field.
    Minamimoto H; Zhou R; Fukushima T; Murakoshi K
    Acc Chem Res; 2022 Mar; 55(6):809-818. PubMed ID: 35184549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing sub-diffraction optical confinement via the polarized Raman spectroscopy of a single-walled carbon nanotube.
    Kim YT; Min H; Lee J; Park H; Lee CY
    Nanoscale; 2018 Jan; 10(3):1030-1037. PubMed ID: 29265127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-Enhanced Raman Scattering and Surface-Enhanced Infrared Absorption by Plasmon Polaritons in Three-Dimensional Nanoparticle Supercrystals.
    Mueller NS; Pfitzner E; Okamura Y; Gordeev G; Kusch P; Lange H; Heberle J; Schulz F; Reich S
    ACS Nano; 2021 Mar; 15(3):5523-5533. PubMed ID: 33667335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering.
    Esteban R; Baumberg JJ; Aizpurua J
    Acc Chem Res; 2022 Jul; 55(14):1889-1899. PubMed ID: 35776555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.