These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 24605966)
1. A multiple-imputation-based approach to sensitivity analyses and effectiveness assessments in longitudinal clinical trials. Ayele BT; Lipkovich I; Molenberghs G; Mallinckrodt CH J Biopharm Stat; 2014; 24(2):211-28. PubMed ID: 24605966 [TBL] [Abstract][Full Text] [Related]
2. Comparison of data analysis strategies for intent-to-treat analysis in pre-test-post-test designs with substantial dropout rates. Salim A; Mackinnon A; Christensen H; Griffiths K Psychiatry Res; 2008 Sep; 160(3):335-45. PubMed ID: 18718673 [TBL] [Abstract][Full Text] [Related]
3. A structured framework for assessing sensitivity to missing data assumptions in longitudinal clinical trials. Mallinckrodt CH; Lin Q; Molenberghs M Pharm Stat; 2013; 12(1):1-6. PubMed ID: 23193075 [TBL] [Abstract][Full Text] [Related]
4. Assessment of type I error rate associated with dose-group switching in a longitudinal Alzheimer trial. Habteab Ghebretinsae A; Molenberghs G; Dmitrienko A; Offen W; Sethuraman G J Biopharm Stat; 2014; 24(3):660-84. PubMed ID: 24697817 [TBL] [Abstract][Full Text] [Related]
5. Estimating the effect of multiple imputation on incomplete longitudinal data with application to a randomized clinical study. Fong DY; Rai SN; Lam KS J Biopharm Stat; 2013; 23(5):1004-22. PubMed ID: 23957512 [TBL] [Abstract][Full Text] [Related]
7. Accounting for dropout bias using mixed-effects models. Mallinckrodt CH; Clark WS; David SR J Biopharm Stat; 2001; 11(1-2):9-21. PubMed ID: 11459446 [TBL] [Abstract][Full Text] [Related]
8. A structured approach to choosing estimands and estimators in longitudinal clinical trials. Mallinckrodt CH; Lin Q; Lipkovich I; Molenberghs G Pharm Stat; 2012; 11(6):456-61. PubMed ID: 22962024 [TBL] [Abstract][Full Text] [Related]
9. An analytic method for the placebo-based pattern-mixture model. Lu K Stat Med; 2014 Mar; 33(7):1134-45. PubMed ID: 24122822 [TBL] [Abstract][Full Text] [Related]
10. A comparison of the random-effects pattern mixture model with last-observation-carried-forward (LOCF) analysis in longitudinal clinical trials with dropouts. Siddiqui O; Ali MW J Biopharm Stat; 1998 Nov; 8(4):545-63. PubMed ID: 9855033 [TBL] [Abstract][Full Text] [Related]
11. Comparisons of methods for analysis of repeated binary responses with missing data. Frank Liu G; Zhan X J Biopharm Stat; 2011 May; 21(3):371-92. PubMed ID: 21442514 [TBL] [Abstract][Full Text] [Related]
12. The efficacy of duloxetine: a comprehensive summary of results from MMRM and LOCF_ANCOVA in eight clinical trials. Mallinckrodt CH; Raskin J; Wohlreich MM; Watkin JG; Detke MJ BMC Psychiatry; 2004 Sep; 4():26. PubMed ID: 15355546 [TBL] [Abstract][Full Text] [Related]
13. Comparison of results from different imputation techniques for missing data from an anti-obesity drug trial. Jørgensen AW; Lundstrøm LH; Wetterslev J; Astrup A; Gøtzsche PC PLoS One; 2014; 9(11):e111964. PubMed ID: 25409438 [TBL] [Abstract][Full Text] [Related]
14. Missing data imputation in two phase III trials treating HIV1 infection. Huson LW; Chung J; Salgo M J Biopharm Stat; 2007; 17(1):159-72. PubMed ID: 17219761 [TBL] [Abstract][Full Text] [Related]
15. Marginal analysis of incomplete longitudinal binary data: a cautionary note on LOCF imputation. Cook RJ; Zeng L; Yi GY Biometrics; 2004 Sep; 60(3):820-8. PubMed ID: 15339307 [TBL] [Abstract][Full Text] [Related]
16. Missing data handling in chronic pain trials. Kim Y J Biopharm Stat; 2011 Mar; 21(2):311-25. PubMed ID: 21391004 [TBL] [Abstract][Full Text] [Related]
17. Comparison of imputation and modelling methods in the analysis of a physical activity trial with missing outcomes. Wood AM; White IR; Hillsdon M; Carpenter J Int J Epidemiol; 2005 Feb; 34(1):89-99. PubMed ID: 15333619 [TBL] [Abstract][Full Text] [Related]
18. MMRM versus MI in dealing with missing data--a comparison based on 25 NDA data sets. Siddiqui O J Biopharm Stat; 2011 May; 21(3):423-36. PubMed ID: 21442517 [TBL] [Abstract][Full Text] [Related]
19. A bias correction in testing treatment efficacy under informative dropout in clinical trials. Kong F; Chen YF; Jin K J Biopharm Stat; 2009 Nov; 19(6):980-1000. PubMed ID: 20183460 [TBL] [Abstract][Full Text] [Related]
20. An evaluation of the trimmed mean approach in clinical trials with dropout. Wang MD; Liu J; Molenberghs G; Mallinckrodt C Pharm Stat; 2018 May; 17(3):278-289. PubMed ID: 29624854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]