These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24606159)

  • 1. Wacker-type oxidation and dehydrogenation of terminal olefins using molecular oxygen as the sole oxidant without adding ligand.
    Wang YF; Gao YR; Mao S; Zhang YL; Guo DD; Yan ZL; Guo SH; Wang YQ
    Org Lett; 2014 Mar; 16(6):1610-3. PubMed ID: 24606159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terminal olefins to linear α,β-unsaturated ketones: Pd(II)/hypervalent iodine co-catalyzed Wacker oxidation-dehydrogenation.
    Bigi MA; White MC
    J Am Chem Soc; 2013 May; 135(21):7831-4. PubMed ID: 23672479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron(III) sulfate as terminal oxidant in the synthesis of methyl ketones via Wacker oxidation.
    Fernandes RA; Chaudhari DA
    J Org Chem; 2014 Jun; 79(12):5787-93. PubMed ID: 24885400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regioselective Wacker-Type Oxidation of Internal Olefins in
    Huang Q; Li YW; Ning XS; Jiang GQ; Zhang XW; Qu JP; Kang YB
    Org Lett; 2020 Feb; 22(3):965-969. PubMed ID: 31971810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MnO
    Fernandes RA; Ramakrishna GV; Bethi V
    Org Biomol Chem; 2020 Aug; 18(31):6115-6125. PubMed ID: 32725041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tsuji-Wacker-Type Oxidation beyond Methyl Ketones: Reacting Unprotected Carbohydrate-Based Terminal Olefins through the "Uemura System" to Hemiketals and α,β-Unsaturated Diketones.
    Runeberg PA; Eklund PC
    Org Lett; 2019 Oct; 21(20):8145-8148. PubMed ID: 31557043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of and mechanistic insight into a ligand-modulated palladium-catalyzed Wacker oxidation of styrenes using TBHP.
    Cornell CN; Sigman MS
    J Am Chem Soc; 2005 Mar; 127(9):2796-7. PubMed ID: 15740083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent progress in Wacker oxidations: moving toward molecular oxygen as the sole oxidant.
    Cornell CN; Sigman MS
    Inorg Chem; 2007 Mar; 46(6):1903-9. PubMed ID: 17348721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of Olefins into Ketones by an Iron-Catalyzed Wacker-type Oxidation Using Oxygen as the Sole Oxidant.
    Puls F; Knölker HJ
    Angew Chem Int Ed Engl; 2018 Jan; 57(5):1222-1226. PubMed ID: 29206335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pd-Catalyzed TBHP-Mediated Selective Wacker-Type Oxidation and Oxo-acyloxylation of Olefins Using a 2-(1
    Zhang S; Zhang J; Zou H
    Org Lett; 2023 Mar; 25(11):1850-1855. PubMed ID: 36896992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypervalent Iodine as a Terminal Oxidant in Wacker-Type Oxidation of Terminal Olefins to Methyl Ketones.
    Chaudhari DA; Fernandes RA
    J Org Chem; 2016 Mar; 81(5):2113-21. PubMed ID: 26845633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional palladium catalysis. 2. Tandem haloallylation followed by Wacker-Tsuji oxidation or sonogashira cross-coupling.
    Thadani AN; Rawal VH
    Org Lett; 2002 Nov; 4(24):4321-3. PubMed ID: 12443088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A general and efficient catalyst system for a Wacker-type oxidation using TBHP as the terminal oxidant: application to classically challenging substrates.
    Michel BW; Camelio AM; Cornell CN; Sigman MS
    J Am Chem Soc; 2009 May; 131(17):6076-7. PubMed ID: 19364100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient aerobic Wacker oxidation of styrenes using palladium bis(isonitrile) catalysts.
    Naik A; Meina L; Zabel M; Reiser O
    Chemistry; 2010 Feb; 16(5):1624-8. PubMed ID: 20013962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convenient and efficient Pd-catalyzed regioselective oxyfunctionalization of terminal olefins by using molecular oxygen as sole reoxidant.
    Mitsudome T; Umetani T; Nosaka N; Mori K; Mizugaki T; Ebitani K; Kaneda K
    Angew Chem Int Ed Engl; 2006 Jan; 45(3):481-5. PubMed ID: 16323234
    [No Abstract]   [Full Text] [Related]  

  • 16. Palladium-catalyzed direct oxidation of alkenes with molecular oxygen: general and practical methods for the preparation of 1,2-diols, aldehydes, and ketones.
    Wang A; Jiang H
    J Org Chem; 2010 Apr; 75(7):2321-6. PubMed ID: 20205415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wacker-Type Oxidation Using an Iron Catalyst and Ambient Air: Application to Late-Stage Oxidation of Complex Molecules.
    Liu B; Jin F; Wang T; Yuan X; Han W
    Angew Chem Int Ed Engl; 2017 Oct; 56(41):12712-12717. PubMed ID: 28815838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Palladium-assisted multicomponent cyclization of aromatic aldehydes, arylamines and terminal olefins under molecular oxygen: an assembly of 1,4-dihydropyridines.
    Jiang H; Ji X; Li Y; Chen Z; Wang A
    Org Biomol Chem; 2011 Aug; 9(15):5358-61. PubMed ID: 21681331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalyst-controlled Wacker-type oxidation of homoallylic alcohols in the absence of protecting groups.
    McCombs JR; Michel BW; Sigman MS
    J Org Chem; 2011 May; 76(9):3609-13. PubMed ID: 21446720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Base-catalyzed efficient tandem [3 + 3] and [3 + 2 + 1] annulation-aerobic oxidative benzannulations.
    Diallo A; Zhao YL; Wang H; Li SS; Ren CQ; Liu Q
    Org Lett; 2012 Nov; 14(22):5776-9. PubMed ID: 23126321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.