These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 24606240)
41. 2,3-difluorotyrosine at position 356 of ribonucleotide reductase R2: a probe of long-range proton-coupled electron transfer. Yee CS; Chang MC; Ge J; Nocera DG; Stubbe J J Am Chem Soc; 2003 Sep; 125(35):10506-7. PubMed ID: 12940718 [TBL] [Abstract][Full Text] [Related]
42. Biophysical Characterization of Fluorotyrosine Probes Site-Specifically Incorporated into Enzymes: E. coli Ribonucleotide Reductase As an Example. Oyala PH; Ravichandran KR; Funk MA; Stucky PA; Stich TA; Drennan CL; Britt RD; Stubbe J J Am Chem Soc; 2016 Jun; 138(25):7951-64. PubMed ID: 27276098 [TBL] [Abstract][Full Text] [Related]
43. 3.3-Å resolution cryo-EM structure of human ribonucleotide reductase with substrate and allosteric regulators bound. Brignole EJ; Tsai KL; Chittuluru J; Li H; Aye Y; Penczek PA; Stubbe J; Drennan CL; Asturias F Elife; 2018 Feb; 7():. PubMed ID: 29460780 [TBL] [Abstract][Full Text] [Related]
44. Enhancement by effectors and substrate nucleotides of R1-R2 interactions in Escherichia coli class Ia ribonucleotide reductase. Kasrayan A; Birgander PL; Pappalardo L; Regnström K; Westman M; Slaby A; Gordon E; Sjöberg BM J Biol Chem; 2004 Jul; 279(30):31050-7. PubMed ID: 15145955 [TBL] [Abstract][Full Text] [Related]
45. A tyrosine-tryptophan dyad and radical-based charge transfer in a ribonucleotide reductase-inspired maquette. Pagba CV; McCaslin TG; Veglia G; Porcelli F; Yohannan J; Guo Z; McDaniel M; Barry BA Nat Commun; 2015 Dec; 6():10010. PubMed ID: 26627888 [TBL] [Abstract][Full Text] [Related]
46. Two distinct mechanisms of inactivation of the class Ic ribonucleotide reductase from Chlamydia trachomatis by hydroxyurea: implications for the protein gating of intersubunit electron transfer. Jiang W; Xie J; Varano PT; Krebs C; Bollinger JM Biochemistry; 2010 Jun; 49(25):5340-9. PubMed ID: 20462199 [TBL] [Abstract][Full Text] [Related]
47. Molecular basis for allosteric specificity regulation in class Ia ribonucleotide reductase from Escherichia coli. Zimanyi CM; Chen PY; Kang G; Funk MA; Drennan CL Elife; 2016 Jan; 5():e07141. PubMed ID: 26754917 [TBL] [Abstract][Full Text] [Related]
48. Structure of the nucleotide radical formed during reaction of CDP/TTP with the E441Q-alpha2beta2 of E. coli ribonucleotide reductase. Zipse H; Artin E; Wnuk S; Lohman GJ; Martino D; Griffin RG; Kacprzak S; Kaupp M; Hoffman B; Bennati M; Stubbe J; Lees N J Am Chem Soc; 2009 Jan; 131(1):200-11. PubMed ID: 19128178 [TBL] [Abstract][Full Text] [Related]
49. Crystal structure of Bacillus cereus class Ib ribonucleotide reductase di-iron NrdF in complex with NrdI. Hammerstad M; Hersleth HP; Tomter AB; Røhr AK; Andersson KK ACS Chem Biol; 2014 Feb; 9(2):526-37. PubMed ID: 24295378 [TBL] [Abstract][Full Text] [Related]
50. Pre-steady-state and steady-state kinetic analysis of E. coli class I ribonucleotide reductase. Ge J; Yu G; Ator MA; Stubbe J Biochemistry; 2003 Sep; 42(34):10071-83. PubMed ID: 12939135 [TBL] [Abstract][Full Text] [Related]
51. Long-range proton-coupled electron transfer in the Reece SY; Seyedsayamdost MR Essays Biochem; 2017 May; 61(2):281-292. PubMed ID: 28487404 [No Abstract] [Full Text] [Related]
52. Direct Interfacial Y Song DY; Pizano AA; Holder PG; Stubbe J; Nocera DG Chem Sci; 2015 Aug; 6(8):4519-4524. PubMed ID: 26504513 [TBL] [Abstract][Full Text] [Related]
53. Photoactive peptides for light-initiated tyrosyl radical generation and transport into ribonucleotide reductase. Reece SY; Seyedsayamdost MR; Stubbe J; Nocera DG J Am Chem Soc; 2007 Jul; 129(27):8500-9. PubMed ID: 17567129 [TBL] [Abstract][Full Text] [Related]
54. Properties of Site-Specifically Incorporated 3-Aminotyrosine in Proteins To Study Redox-Active Tyrosines: Escherichia coli Ribonucleotide Reductase as a Paradigm. Lee W; Kasanmascheff M; Huynh M; Quartararo A; Costentin C; Bejenke I; Nocera DG; Bennati M; Tommos C; Stubbe J Biochemistry; 2018 Jun; 57(24):3402-3415. PubMed ID: 29630358 [TBL] [Abstract][Full Text] [Related]
55. Activation of the anaerobic ribonucleotide reductase from Escherichia coli. The essential role of the iron-sulfur center for S-adenosylmethionine reduction. Ollagnier S; Mulliez E; Schmidt PP; Eliasson R; Gaillard J; Deronzier C; Bergman T; Gräslund A; Reichard P; Fontecave M J Biol Chem; 1997 Sep; 272(39):24216-23. PubMed ID: 9305874 [TBL] [Abstract][Full Text] [Related]
56. Photo-ribonucleotide reductase β2 by selective cysteine labeling with a radical phototrigger. Pizano AA; Lutterman DA; Holder PG; Teets TS; Stubbe J; Nocera DG Proc Natl Acad Sci U S A; 2012 Jan; 109(1):39-43. PubMed ID: 22171005 [TBL] [Abstract][Full Text] [Related]
57. Glutamate Mediates Proton-Coupled Electron Transfer Between Tyrosines 730 and 731 in Reinhardt CR; Sayfutyarova ER; Zhong J; Hammes-Schiffer S J Am Chem Soc; 2021 Apr; 143(16):6054-6059. PubMed ID: 33856807 [TBL] [Abstract][Full Text] [Related]
58. Replacement of Y730 and Y731 in the alpha2 subunit of Escherichia coli ribonucleotide reductase with 3-aminotyrosine using an evolved suppressor tRNA/tRNA-synthetase pair. Seyedsayamdost MR; Stubbe J Methods Enzymol; 2009; 462():45-76. PubMed ID: 19632469 [TBL] [Abstract][Full Text] [Related]
59. How ATP and dATP Act as Molecular Switches to Regulate Enzymatic Activity in the Prototypical Bacterial Class Ia Ribonucleotide Reductase. Funk MA; Zimanyi CM; Andree GA; Hamilos AE; Drennan CL Biochemistry; 2024 Oct; 63(19):2517-2531. PubMed ID: 39164005 [TBL] [Abstract][Full Text] [Related]
60. Use of a chemical trigger for electron transfer to characterize a precursor to cluster X in assembly of the iron-radical cofactor of Escherichia coli ribonucleotide reductase. Saleh L; Krebs C; Ley BA; Naik S; Huynh BH; Bollinger JM Biochemistry; 2004 May; 43(20):5953-64. PubMed ID: 15147179 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]