BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24606248)

  • 1. Influence of shell compressibility on the ultrasonic properties of polydispersed suspensions of nanometric encapsulated droplets.
    Guédra M; Valier-Brasier T; Conoir JM; Coulouvrat F; Astafyeva K; Thomas JL
    J Acoust Soc Am; 2014 Mar; 135(3):1044-55. PubMed ID: 24606248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for ultrasound absorption and dispersion in dilute suspensions of nanometric contrast agents.
    Coulouvrat F; Thomas JL; Astafyeva K; Taulier N; Conoir JM; Urbach W
    J Acoust Soc Am; 2012 Dec; 132(6):3748-59. PubMed ID: 23231105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic scattering cross sections of shell-encapsulated gas bubbles immersed in a viscoelastic liquid: first and second harmonics.
    Machado JC; Valente JS
    Ultrasonics; 2003 Nov; 41(8):605-13. PubMed ID: 14585472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review of shell models for contrast agent microbubbles.
    Doinikov AA; Bouakaz A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):981-93. PubMed ID: 21622054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rayleigh theory of ultrasound scattering applied to liquid-filled contrast nanoparticles.
    Flegg MB; Poole CM; Whittaker AK; Keen I; Langton CM
    Phys Med Biol; 2010 Jun; 55(11):3061-76. PubMed ID: 20463372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic microstreaming around an encapsulated particle.
    Doinikov AA; Bouakaz A
    J Acoust Soc Am; 2010 Mar; 127(3):1218-27. PubMed ID: 20329820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on the inertial cavitation threshold and shell properties of commercialized ultrasound contrast agent microbubbles.
    Guo X; Li Q; Zhang Z; Zhang D; Tu J
    J Acoust Soc Am; 2013 Aug; 134(2):1622-31. PubMed ID: 23927202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for acoustic vaporization of encapsulated droplets.
    Guédra M; Coulouvrat F
    J Acoust Soc Am; 2015 Dec; 138(6):3656-67. PubMed ID: 26723321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for the dynamics of ultrasound contrast agents in vivo.
    Qin S; Ferrara KW
    J Acoust Soc Am; 2010 Sep; 128(3):1511-21. PubMed ID: 20815486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic characterization of monodisperse lipid-coated microbubbles: relationship between size and shell viscoelastic properties.
    Parrales MA; Fernandez JM; Perez-Saborid M; Kopechek JA; Porter TM
    J Acoust Soc Am; 2014 Sep; 136(3):1077. PubMed ID: 25190383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of an encapsulated bubble shell.
    Krasovitski B; Kimmel E
    Ultrasonics; 2006 Feb; 44(2):216-20. PubMed ID: 16388834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymeric microbubbles for ultrasonic molecular imaging and targeted therapeutics.
    Xiong X; Zhao F; Shi M; Yang H; Liu Y
    J Biomater Sci Polym Ed; 2011; 22(4-6):417-28. PubMed ID: 21144258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear response to ultrasound of encapsulated microbubbles.
    Jiménez-Fernández J
    Ultrasonics; 2012 Aug; 52(6):784-93. PubMed ID: 22406132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subharmonic behavior of phospholipid-coated ultrasound contrast agent microbubbles.
    Sijl J; Dollet B; Overvelde M; Garbin V; Rozendal T; de Jong N; Lohse D; Versluis M
    J Acoust Soc Am; 2010 Nov; 128(5):3239-52. PubMed ID: 21110619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling non-spherical oscillations and stability of acoustically driven shelled microbubbles.
    Loughran J; Eckersley RJ; Tang MX
    J Acoust Soc Am; 2012 Jun; 131(6):4349-57. PubMed ID: 22712909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical stability of hollow spherical nano-aggregates as ultrasound contrast agent.
    Hadinoto K
    Int J Pharm; 2009 Jun; 374(1-2):153-61. PubMed ID: 19446772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasonic bubbles in medicine: influence of the shell.
    Postema M; Schmitz G
    Ultrason Sonochem; 2007 Apr; 14(4):438-44. PubMed ID: 17218145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic wave propagation in concentrated slurries--the modelling problem.
    Challis RE; Pinfield VJ
    Ultrasonics; 2014 Sep; 54(7):1737-44. PubMed ID: 24784462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplets, Bubbles and Ultrasound Interactions.
    Shpak O; Verweij M; de Jong N; Versluis M
    Adv Exp Med Biol; 2016; 880():157-74. PubMed ID: 26486337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear radial oscillations of encapsulated microbubbles subject to ultrasound: the effect of membrane constitutive law.
    Tsiglifis K; Pelekasis NA
    J Acoust Soc Am; 2008 Jun; 123(6):4059-70. PubMed ID: 18537358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.