These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24606256)

  • 1. Computation of dispersion curves for embedded waveguides using a dashpot boundary condition.
    Gravenkamp H; Birk C; Song C
    J Acoust Soc Am; 2014 Mar; 135(3):1127-38. PubMed ID: 24606256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The simulation of Lamb waves in a cracked plate using the scaled boundary finite element method.
    Gravenkamp H; Prager J; Saputra AA; Song C
    J Acoust Soc Am; 2012 Sep; 132(3):1358-67. PubMed ID: 22978864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling sound propagation in acoustic waveguides using a hybrid numerical method.
    Kirby R
    J Acoust Soc Am; 2008 Oct; 124(4):1930-40. PubMed ID: 19062832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of modified integration rule to time-domain finite-element acoustic simulation of rooms.
    Okuzono T; Otsuru T; Tomiku R; Okamoto N
    J Acoust Soc Am; 2012 Aug; 132(2):804-13. PubMed ID: 22894203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absorption and impedance boundary conditions for phased geometrical-acoustics methods.
    Jeong CH
    J Acoust Soc Am; 2012 Oct; 132(4):2347-58. PubMed ID: 23039431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient finite element modeling of radiation forces on elastic particles of arbitrary size and geometry.
    Glynne-Jones P; Mishra PP; Boltryk RJ; Hill M
    J Acoust Soc Am; 2013 Apr; 133(4):1885-93. PubMed ID: 23556558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementing an exact finite boundary integral equation method for finite rough surfaces (L).
    Fawcett JA
    J Acoust Soc Am; 2011 Nov; 130(5):2623-6. PubMed ID: 22087886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modal-based reduction method for sound absorbing porous materials in poro-acoustic finite element models.
    Rumpler R; Deü JF; Göransson P
    J Acoust Soc Am; 2012 Nov; 132(5):3162-79. PubMed ID: 23145601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A coupled modal-finite element method for the wave propagation modeling in irregular open waveguides.
    Pelat A; Felix S; Pagneux V
    J Acoust Soc Am; 2011 Mar; 129(3):1240-9. PubMed ID: 21428487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses.
    Cutanda-Henríquez V; Juhl PM
    J Acoust Soc Am; 2013 Nov; 134(5):3409-18. PubMed ID: 24180751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boundary effects on backscattering by a solid aluminum cylinder: experiment and finite element model comparisons (L).
    La Follett JR; Williams KL; Marston PL
    J Acoust Soc Am; 2011 Aug; 130(2):669-72. PubMed ID: 21877778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
    Bin J; Yousuff Hussaini M; Lee S
    J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A displacement-pressure finite element formulation for analyzing the sound transmission in ducted shear flows with finite poroelastic lining.
    Nennig B; Tahar MB; Perrey-Debain E
    J Acoust Soc Am; 2011 Jul; 130(1):42-51. PubMed ID: 21786876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersion analysis of leaky guided waves in fluid-loaded waveguides of generic shape.
    Mazzotti M; Marzani A; Bartoli I
    Ultrasonics; 2014 Jan; 54(1):408-18. PubMed ID: 23932015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A spacing compensation factor for the optimization of guided wave annular array transducers.
    Borigo C; Rose JL; Yan F
    J Acoust Soc Am; 2013 Jan; 133(1):127-35. PubMed ID: 23297889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fourier continuation methods for high-fidelity simulation of nonlinear acoustic beams.
    Albin N; Bruno OP; Cheung TY; Cleveland RO
    J Acoust Soc Am; 2012 Oct; 132(4):2371-87. PubMed ID: 23039433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The investigation of guided wave propagation around a pipe bend using an analytical modeling approach.
    Sanderson RM; Hutchins DA; Billson DR; Mudge PJ
    J Acoust Soc Am; 2013 Mar; 133(3):1404-14. PubMed ID: 23464012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A coupled SAFE-2.5D BEM approach for the dispersion analysis of damped leaky guided waves in embedded waveguides of arbitrary cross-section.
    Mazzotti M; Bartoli I; Marzani A; Viola E
    Ultrasonics; 2013 Sep; 53(7):1227-41. PubMed ID: 23642317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiobjective muffler shape optimization with hybrid acoustics modeling.
    Airaksinen T; Heikkola E
    J Acoust Soc Am; 2011 Sep; 130(3):1359-69. PubMed ID: 21895077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quasi two-dimensional model for sound attenuation by the sonic crystals.
    Gupta A; Lim KM; Chew CH
    J Acoust Soc Am; 2012 Oct; 132(4):2909-14. PubMed ID: 23039557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.