These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24606280)

  • 1. Three-dimensional finite element modeling of the human external ear: simulation study of the bone conduction occlusion effect.
    Brummund MK; Sgard F; Petit Y; Laville F
    J Acoust Soc Am; 2014 Mar; 135(3):1433-44. PubMed ID: 24606280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite element model to predict the sound attenuation of earplugs in an acoustical test fixture.
    Viallet G; Sgard F; Laville F; Boutin J
    J Acoust Soc Am; 2014 Sep; 136(3):1269. PubMed ID: 25190400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axisymmetric versus three-dimensional finite element models for predicting the attenuation of earplugs in rigid walled ear canals.
    Viallet G; Sgard F; Laville F; Boutin J
    J Acoust Soc Am; 2013 Dec; 134(6):4470. PubMed ID: 25669258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D finite element modeling of earplug-induced occlusion effect in the human ear.
    Bradshaw JJ; Brown MA; Bien AG; Gan RZ
    Med Eng Phys; 2024 Jul; 129():104192. PubMed ID: 38906574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional finite element modeling of human ear for sound transmission.
    Gan RZ; Feng B; Sun Q
    Ann Biomed Eng; 2004 Jun; 32(6):847-59. PubMed ID: 15255215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of the power transmission of bone-conducted sound in a finite-element model of the human head.
    Chang Y; Kim N; Stenfelt S
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1741-1755. PubMed ID: 30019294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifield coupled finite element analysis for sound transmission in otitis media with effusion.
    Gan RZ; Wang X
    J Acoust Soc Am; 2007 Dec; 122(6):3527-38. PubMed ID: 18247761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element modeling of energy absorbance in normal and disordered human ears.
    Zhang X; Gan RZ
    Hear Res; 2013 Jul; 301():146-55. PubMed ID: 23274858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of wave propagation in a realistic model of the human external ear.
    Fadaei M; Abouali O; Emdad H; Faramarzi M; Ahmadi G
    Comput Methods Biomech Biomed Engin; 2015; 18(16):1797-810. PubMed ID: 25513857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic-structural coupled finite element analysis for sound transmission in human ear--pressure distributions.
    Gan RZ; Sun Q; Feng B; Wood MW
    Med Eng Phys; 2006 Jun; 28(5):395-404. PubMed ID: 16122964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanics of the tympanic membrane.
    Volandri G; Di Puccio F; Forte P; Carmignani C
    J Biomech; 2011 Apr; 44(7):1219-36. PubMed ID: 21376326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-integrated finite element modeling of human middle ear.
    Sun Q; Gan RZ; Chang KH; Dormer KJ
    Biomech Model Mechanobiol; 2002 Oct; 1(2):109-22. PubMed ID: 14595544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of the occlusion effect with bone-conducted stimulation.
    Stenfelt S; Reinfeldt S
    Int J Audiol; 2007 Oct; 46(10):595-608. PubMed ID: 17922349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibro-acoustic modelling of the outer and middle ear using the finite-element method.
    Prendergast PJ; Ferris P; Rice HJ; Blayney AW
    Audiol Neurootol; 1999; 4(3-4):185-91. PubMed ID: 10187928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of acoustical test fixtures for the measurement of hearing protector attenuation. Part II: Modeling the external ear, simulating bone conduction, and comparing test fixture and real-ear data.
    Schroeter J; Poesselt C
    J Acoust Soc Am; 1986 Aug; 80(2):505-27. PubMed ID: 3745683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Verifying the attenuation of earplugs in situ: method validation using artificial head and numerical simulations.
    Bockstael A; de Greve B; Van Renterghem T; Botteldooren D; D'Haenens W; Keppler H; Maes L; Philips B; Swinnen F; Vinck B
    J Acoust Soc Am; 2008 Aug; 124(2):973-81. PubMed ID: 18681589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of bone conduction skull transmission by hearing thresholds and ear-canal sound pressure.
    Reinfeldt S; Stenfelt S; HÃ¥kansson B
    Hear Res; 2013 May; 299():19-28. PubMed ID: 23422311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human middle-ear model with compound eardrum and airway branching in mastoid air cells.
    Keefe DH
    J Acoust Soc Am; 2015 May; 137(5):2698-725. PubMed ID: 25994701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element model of the human head for auditory bone conduction simulation.
    Taschke H; Hudde H
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):319-23. PubMed ID: 17065823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maturation of the occlusion effect: a bone conduction auditory steady state response study in infants and adults with normal hearing.
    Small SA; Hu N
    Ear Hear; 2011; 32(6):708-19. PubMed ID: 21617531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.