BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24606284)

  • 1. The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model.
    Zhang Z
    J Acoust Soc Am; 2014 Mar; 135(3):1480-90. PubMed ID: 24606284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biaxial mechanical properties of human vocal fold cover under vocal fold elongation.
    Zhang Z; Samajder H; Long JL
    J Acoust Soc Am; 2017 Oct; 142(4):EL356. PubMed ID: 29092582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric vibration in a two-layer vocal fold model with left-right stiffness asymmetry: experiment and simulation.
    Zhang Z; Luu TH
    J Acoust Soc Am; 2012 Sep; 132(3):1626-35. PubMed ID: 22978891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics.
    Zhang Z
    J Acoust Soc Am; 2010 Apr; 127(4):2554-62. PubMed ID: 20370037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of phonation onset in a two-layer vocal fold model.
    Zhang Z
    J Acoust Soc Am; 2009 Feb; 125(2):1091-102. PubMed ID: 19206884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds.
    Mendelsohn AH; Zhang Z
    J Acoust Soc Am; 2011 Nov; 130(5):2961-8. PubMed ID: 22087924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
    Kvit AA; Devine EE; Jiang JJ; Vamos AC; Tao C
    J Voice; 2015 May; 29(3):265-72. PubMed ID: 25619469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibratory responses of synthetic, self-oscillating vocal fold models.
    Murray PR; Thomson SL
    J Acoust Soc Am; 2012 Nov; 132(5):3428-38. PubMed ID: 23145623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
    Tao C; Jiang JJ; Zhang Y
    J Acoust Soc Am; 2006 Jun; 119(6):3987-94. PubMed ID: 16838541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The anisotropic hyperelastic biomechanical response of the vocal ligament and implications for frequency regulation: a case study.
    Kelleher JE; Siegmund T; Du M; Naseri E; Chan RW
    J Acoust Soc Am; 2013 Mar; 133(3):1625-36. PubMed ID: 23464032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A synthetic, self-oscillating vocal fold model platform for studying augmentation injection.
    Murray PR; Thomson SL; Smith ME
    J Voice; 2014 Mar; 28(2):133-43. PubMed ID: 24476985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2017 Oct; 142(4):2311. PubMed ID: 29092586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of inferior surface angle on the self-oscillation of a computational vocal fold model.
    Smith SL; Thomson SL
    J Acoust Soc Am; 2012 May; 131(5):4062-75. PubMed ID: 22559379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vocal fold contact pressure in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2019 Jul; 146(1):256. PubMed ID: 31370600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.
    Lucero JC; Van Hirtum A; Ruty N; Cisonni J; Pelorson X
    J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of vocal fold vibratory modes to their three-layer structure: implications for computational modeling of phonation.
    Xue Q; Zheng X; Bielamowicz S; Mittal R
    J Acoust Soc Am; 2011 Aug; 130(2):965-76. PubMed ID: 21877809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct-numerical simulation of the glottal jet and vocal-fold dynamics in a three-dimensional laryngeal model.
    Zheng X; Mittal R; Xue Q; Bielamowicz S
    J Acoust Soc Am; 2011 Jul; 130(1):404-15. PubMed ID: 21786908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vocal instabilities in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2018 Sep; 144(3):1216. PubMed ID: 30424612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of gradients in vocal fold elastic modulus on phonation.
    Bhattacharya P; Kelleher JE; Siegmund T
    J Biomech; 2015 Sep; 48(12):3356-63. PubMed ID: 26159059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.