These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24606284)

  • 41. A Computational Study of Vocal Fold Dehydration During Phonation.
    Wu L; Zhang Z
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2938-2948. PubMed ID: 28391188
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vibration in a self-oscillating vocal fold model with left-right asymmetry in body-layer stiffness.
    Zhang Z
    J Acoust Soc Am; 2010 Nov; 128(5):EL279-85. PubMed ID: 21110539
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anterior-posterior biphonation in a finite element model of vocal fold vibration.
    Tao C; Jiang JJ
    J Acoust Soc Am; 2006 Sep; 120(3):1570-7. PubMed ID: 17004479
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamics of the Driving Force During the Normal Vocal Fold Vibration Cycle.
    DeJonckere PH; Lebacq J; Titze IR
    J Voice; 2017 Nov; 31(6):649-661. PubMed ID: 28495329
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatially varying properties of the vocal ligament contribute to its eigenfrequency response.
    Kelleher JE; Zhang K; Siegmund T; Chan RW
    J Mech Behav Biomed Mater; 2010 Nov; 3(8):600-9. PubMed ID: 20826366
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flow-induced vibratory response of idealized versus magnetic resonance imaging-based synthetic vocal fold models.
    Pickup BA; Thomson SL
    J Acoust Soc Am; 2010 Sep; 128(3):EL124-9. PubMed ID: 20815428
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Young's modulus of canine vocal fold cover layers.
    Chhetri DK; Rafizadeh S
    J Voice; 2014 Jul; 28(4):406-10. PubMed ID: 24491497
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Imaging and Analysis of Human Vocal Fold Vibration Using Two-Dimensional (2D) Scanning Videokymography.
    Park HJ; Cha W; Kim GH; Jeon GR; Lee BJ; Shin BJ; Choi YG; Wang SG
    J Voice; 2016 May; 30(3):345-53. PubMed ID: 26239969
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modulating phonation through alteration of vocal fold medial surface contour.
    Mau T; Muhlestein J; Callahan S; Chan RW
    Laryngoscope; 2012 Sep; 122(9):2005-14. PubMed ID: 22865592
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dynamic vocal fold parameters with changing adduction in ex-vivo hemilarynx experiments.
    Döllinger M; Berry DA; Kniesburges S
    J Acoust Soc Am; 2016 May; 139(5):2372. PubMed ID: 27250133
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A numerical analysis of phonation using a two-dimensional flexible channel model of the vocal folds.
    Ikeda T; Matsuzaki Y; Aomatsu T
    J Biomech Eng; 2001 Dec; 123(6):571-9. PubMed ID: 11783728
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimized transformation of the glottal motion into a mechanical model.
    Triep M; Brücker C; Stingl M; Döllinger M
    Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomechanical modeling of the three-dimensional aspects of human vocal fold dynamics.
    Yang A; Lohscheller J; Berry DA; Becker S; Eysholdt U; Voigt D; Döllinger M
    J Acoust Soc Am; 2010 Feb; 127(2):1014-31. PubMed ID: 20136223
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reducing the number of vocal fold mechanical tissue properties: evaluation of the incompressibility and planar displacement assumptions.
    Cook DD; Nauman E; Mongeau L
    J Acoust Soc Am; 2008 Dec; 124(6):3888-96. PubMed ID: 19206814
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Could spatial heterogeneity in human vocal fold elastic properties improve the quality of phonation?
    Kelleher JE; Siegmund T; Chan RW
    Ann Biomed Eng; 2012 Dec; 40(12):2708-18. PubMed ID: 22707177
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of poroelastic coefficients on normal vibration modes in vocal-fold tissues.
    Tao C; Liu X
    J Acoust Soc Am; 2011 Feb; 129(2):934-43. PubMed ID: 21361450
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational modeling of vibration-induced systemic hydration of vocal folds over a range of phonation conditions.
    Bhattacharya P; Siegmund T
    Int J Numer Method Biomed Eng; 2014 Oct; 30(10):1019-43. PubMed ID: 24760548
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Verification of two minimally invasive methods for the estimation of the contact pressure in human vocal folds during phonation.
    Chen LJ; Mongeau L
    J Acoust Soc Am; 2011 Sep; 130(3):1618-27. PubMed ID: 21895099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.