These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24606335)

  • 1. Mechanical stimulation evokes rapid increases in extracellular adenosine concentration in the prefrontal cortex.
    Ross AE; Nguyen MD; Privman E; Venton BJ
    J Neurochem; 2014 Jul; 130(1):50-60. PubMed ID: 24606335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of spontaneous and mechanically-stimulated adenosine release in mice.
    Wang Y; Venton BJ
    Neurochem Int; 2019 Mar; 124():46-50. PubMed ID: 30579856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex.
    Nguyen MD; Lee ST; Ross AE; Ryals M; Choudhry VI; Venton BJ
    PLoS One; 2014; 9(1):e87165. PubMed ID: 24494035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of electrically stimulated adenosine release varies by brain region.
    Pajski ML; Venton BJ
    Purinergic Signal; 2013 Jun; 9(2):167-74. PubMed ID: 23192278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of medial prefrontal cortex dopamine by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptors.
    Wu WR; Li N; Sorg BA
    Neuroscience; 2002; 114(2):507-16. PubMed ID: 12204218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient adenosine efflux in the rat caudate-putamen.
    Cechova S; Venton BJ
    J Neurochem; 2008 May; 105(4):1253-63. PubMed ID: 18194431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comonitoring of adenosine and dopamine using the Wireless Instantaneous Neurotransmitter Concentration System: proof of principle.
    Shon YM; Chang SY; Tye SJ; Kimble CJ; Bennet KE; Blaha CD; Lee KH
    J Neurosurg; 2010 Mar; 112(3):539-48. PubMed ID: 19731995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wireless Instantaneous Neurotransmitter Concentration System-based amperometric detection of dopamine, adenosine, and glutamate for intraoperative neurochemical monitoring.
    Agnesi F; Tye SJ; Bledsoe JM; Griessenauer CJ; Kimble CJ; Sieck GC; Bennet KE; Garris PA; Blaha CD; Lee KH
    J Neurosurg; 2009 Oct; 111(4):701-11. PubMed ID: 19425899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-Channel Electrochemical Measurements Reveal Rapid Adenosine is Localized in Brain Slices.
    Chang Y; Venton BJ
    ACS Chem Neurosci; 2022 Feb; 13(4):477-485. PubMed ID: 35077156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pannexin1 channels regulate mechanically stimulated but not spontaneous adenosine release.
    Lee ST; Chang Y; Venton BJ
    Anal Bioanal Chem; 2022 May; 414(13):3781-3789. PubMed ID: 35381855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional Variations of Spontaneous, Transient Adenosine Release in Brain Slices.
    Lee ST; Venton BJ
    ACS Chem Neurosci; 2018 Mar; 9(3):505-513. PubMed ID: 29135225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple pathways for elevating extracellular adenosine in the rat hippocampal CA1 region characterized by adenosine sensor cells.
    Yamashiro K; Fujii Y; Maekawa S; Morita M
    J Neurochem; 2017 Jan; 140(1):24-36. PubMed ID: 27896810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evoked extracellular dopamine in vivo in the medial prefrontal cortex.
    Garris PA; Collins LB; Jones SR; Wightman RM
    J Neurochem; 1993 Aug; 61(2):637-47. PubMed ID: 8336146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time monitoring of extracellular adenosine using enzyme-linked microelectrode arrays.
    Hinzman JM; Gibson JL; Tackla RD; Costello MS; Burmeister JJ; Quintero JE; Gerhardt GA; Hartings JA
    Biosens Bioelectron; 2015 Dec; 74():512-7. PubMed ID: 26183072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of transient adenosine release and oxygen changes in the caudate-putamen.
    Wang Y; Venton BJ
    J Neurochem; 2017 Jan; 140(1):13-23. PubMed ID: 27314215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P2Y(1) receptor activation inhibits NMDA receptor-channels in layer V pyramidal neurons of the rat prefrontal and parietal cortex.
    Luthardt J; Borvendeg SJ; Sperlagh B; Poelchen W; Wirkner K; Illes P
    Neurochem Int; 2003 Jan; 42(2):161-72. PubMed ID: 12421596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A1 receptors self-regulate adenosine release in the striatum: evidence of autoreceptor characteristics.
    Cechova S; Elsobky AM; Venton BJ
    Neuroscience; 2010 Dec; 171(4):1006-15. PubMed ID: 20933584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microthalamotomy effect during deep brain stimulation: potential involvement of adenosine and glutamate efflux.
    Chang SY; Shon YM; Agnesi F; Lee KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3294-7. PubMed ID: 19964296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-induced changes in extracellular dopamine and serotonin in the medial prefrontal cortex and dorsal hippocampus of prenatally malnourished rats.
    Mokler DJ; Torres OI; Galler JR; Morgane PJ
    Brain Res; 2007 May; 1148():226-33. PubMed ID: 17368432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionotropic glutamate receptor types leading to adenosine-mediated inhibition of electrically evoked [3H]-noradrenaline release in rabbit brain cortex slices.
    von Kügelgen I; Späth L; Starke K
    Br J Pharmacol; 1993 Dec; 110(4):1544-50. PubMed ID: 7508327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.