These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 24606418)
1. Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum--implications for Precambrian Fe(II) oxidation. Wu W; Swanner ED; Hao L; Zeitvogel F; Obst M; Pan Y; Kappler A FEMS Microbiol Ecol; 2014 Jun; 88(3):503-15. PubMed ID: 24606418 [TBL] [Abstract][Full Text] [Related]
2. Physiological characterization of a halotolerant anoxygenic phototrophic Fe(II)-oxidizing green-sulfur bacterium isolated from a marine sediment. Laufer K; Niemeyer A; Nikeleit V; Halama M; Byrne JM; Kappler A FEMS Microbiol Ecol; 2017 May; 93(5):. PubMed ID: 28431154 [TBL] [Abstract][Full Text] [Related]
3. Laboratory Simulation of an Iron(II)-rich Precambrian Marine Upwelling System to Explore the Growth of Photosynthetic Bacteria. Maisch M; Wu W; Kappler A; Swanner ED J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500924 [TBL] [Abstract][Full Text] [Related]
4. Dissolved silica affects the bulk iron redox state and recrystallization of minerals generated by photoferrotrophy in a simulated Archean ocean. Zhou A; Templeton AS; Johnson JE Geobiology; 2024; 22(1):e12587. PubMed ID: 38385601 [TBL] [Abstract][Full Text] [Related]
5. Does a low-pH microenvironment around phototrophic Fe(II) -oxidizing bacteria prevent cell encrustation by Fe(III) minerals? Hegler F; Schmidt C; Schwarz H; Kappler A FEMS Microbiol Ecol; 2010 Dec; 74(3):592-600. PubMed ID: 20950343 [TBL] [Abstract][Full Text] [Related]
6. Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria. Peng C; Bryce C; Sundman A; Kappler A Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30796062 [TBL] [Abstract][Full Text] [Related]
7. Microbial processes during deposition and diagenesis of Banded Iron Formations. Dreher CL; Schad M; Robbins LJ; Konhauser KO; Kappler A; Joshi P Palaontol Z; 2021; 95(4):593-610. PubMed ID: 35034981 [TBL] [Abstract][Full Text] [Related]
8. Rhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. Straub KL; Rainey FA; Widdel F Int J Syst Bacteriol; 1999 Apr; 49 Pt 2():729-35. PubMed ID: 10319496 [TBL] [Abstract][Full Text] [Related]
9. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS. Nordhoff M; Tominski C; Halama M; Byrne JM; Obst M; Kleindienst S; Behrens S; Kappler A Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455336 [TBL] [Abstract][Full Text] [Related]
10. Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake. Walter XA; Picazo A; Miracle MR; Vicente E; Camacho A; Aragno M; Zopfi J Front Microbiol; 2014; 5():713. PubMed ID: 25538702 [TBL] [Abstract][Full Text] [Related]
11. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Ehrenreich A; Widdel F Appl Environ Microbiol; 1994 Dec; 60(12):4517-26. PubMed ID: 7811087 [TBL] [Abstract][Full Text] [Related]
12. Limited reduction of ferrihydrite encrusted by goethite in freshwater sediment. Kikuchi S; Makita H; Konno U; Shiraishi F; Ijiri A; Takai K; Maeda M; Takahashi Y Geobiology; 2016 Jul; 14(4):374-89. PubMed ID: 27027643 [TBL] [Abstract][Full Text] [Related]
13. Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(II) Oxidation. Bryce C; Franz-Wachtel M; Nalpas NC; Miot J; Benzerara K; Byrne JM; Kleindienst S; Macek B; Kappler A Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29915106 [TBL] [Abstract][Full Text] [Related]
14. Coexistence of Microaerophilic, Nitrate-Reducing, and Phototrophic Fe(II) Oxidizers and Fe(III) Reducers in Coastal Marine Sediment. Laufer K; Nordhoff M; Røy H; Schmidt C; Behrens S; Jørgensen BB; Kappler A Appl Environ Microbiol; 2015 Dec; 82(5):1433-1447. PubMed ID: 26682861 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic Fe(II)-oxidizing bacteria show as resistance and immobilize as during Fe(III) mineral precipitation. Hohmann C; Winkler E; Morin G; Kappler A Environ Sci Technol; 2010 Jan; 44(1):94-101. PubMed ID: 20039738 [TBL] [Abstract][Full Text] [Related]
16. Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria. Lueder U; Druschel G; Emerson D; Kappler A; Schmidt C FEMS Microbiol Ecol; 2018 Feb; 94(2):. PubMed ID: 29228192 [TBL] [Abstract][Full Text] [Related]
17. Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments. Hegler F; Posth NR; Jiang J; Kappler A FEMS Microbiol Ecol; 2008 Nov; 66(2):250-60. PubMed ID: 18811650 [TBL] [Abstract][Full Text] [Related]
18. Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans. Thompson KJ; Kenward PA; Bauer KW; Warchola T; Gauger T; Martinez R; Simister RL; Michiels CC; Llirós M; Reinhard CT; Kappler A; Konhauser KO; Crowe SA Sci Adv; 2019 Nov; 5(11):eaav2869. PubMed ID: 31807693 [TBL] [Abstract][Full Text] [Related]
19. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils. Krepski ST; Emerson D; Hredzak-Showalter PL; Luther GW; Chan CS Geobiology; 2013 Sep; 11(5):457-71. PubMed ID: 23790206 [TBL] [Abstract][Full Text] [Related]
20. Potential function of added minerals as nucleation sites and effect of humic substances on mineral formation by the nitrate-reducing Fe(II)-oxidizer Acidovorax sp. BoFeN1. Dippon U; Pantke C; Porsch K; Larese-Casanova P; Kappler A Environ Sci Technol; 2012 Jun; 46(12):6556-65. PubMed ID: 22642801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]