BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 24606632)

  • 21. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells.
    Tian J; Zhang Q; Zhang L; Gao R; Shen L; Zhang S; Qu X; Cao G
    Nanoscale; 2013 Feb; 5(3):936-43. PubMed ID: 23166058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solution-processed LiF-doped ZnO films for high performance low temperature field effect transistors and inverted solar cells.
    Chang J; Lin Z; Zhu C; Chi C; Zhang J; Wu J
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6687-93. PubMed ID: 23773013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of Dual Cathode Buffer Layer on the Charge Carrier Dynamics of rrP3HT:PCBM Based Bulk Heterojunction Solar Cell.
    Singh A; Dey A; Das D; Iyer PK
    ACS Appl Mater Interfaces; 2016 May; 8(17):10904-10. PubMed ID: 27075007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of the morphology of nanostructured ZnO and interface modification on the device configuration and charge transport of ZnO/polymer hybrid solar cells.
    Ruankham P; Yoshikawa S; Sagawa T
    Phys Chem Chem Phys; 2013 Jun; 15(24):9516-22. PubMed ID: 23446342
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced electron extraction capability of polymer solar cells via modifying the cathode buffer layer with inorganic quantum dots.
    Li Z; Li S; Zhang Z; Zhang X; Li J; Liu C; Shen L; Guo W; Ruan S
    Phys Chem Chem Phys; 2016 Apr; 18(16):11435-42. PubMed ID: 27055908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of the Energy Level Alignment between the Photoactive Layer and the Cathode Contact Utilizing Solution-Processed Hafnium Acetylacetonate as Buffer Layer for Efficient Polymer Solar Cells.
    Yu L; Li Q; Shi Z; Liu H; Wang Y; Wang F; Zhang B; Dai S; Lin J; Tan Z
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):432-41. PubMed ID: 26684416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution-processed Cu2ZnSnS4 superstrate solar cell using vertically aligned ZnO nanorods.
    Lee D; Yong K
    Nanotechnology; 2014 Feb; 25(6):065401. PubMed ID: 24434835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Situ Photocatalytically Heterostructured ZnO-Ag Nanoparticle Composites as Effective Cathode-Modifying Layers for Air-Processed Polymer Solar Cells.
    Yuan K; Chen L; Chen Y
    Chemistry; 2015 Aug; 21(33):11899-906. PubMed ID: 26135916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poly(N-vinylpyrrolidone)-decorated reduced graphene oxide with ZnO grown in situ as a cathode buffer layer for polymer solar cells.
    Hu T; Chen L; Yuan K; Chen Y
    Chemistry; 2014 Dec; 20(51):17178-84. PubMed ID: 25345881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-Assembly of 1-Pyrenemethanol on ZnO Surface toward Combined Cathode Buffer Layers for Inverted Polymer Solar Cells.
    Cai X; Yuan T; Liu X; Tu G
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36082-36089. PubMed ID: 28967247
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High performance planar heterojunction perovskite solar cells with fullerene derivatives as the electron transport layer.
    Liu C; Wang K; Du P; Meng T; Yu X; Cheng SZ; Gong X
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1153-9. PubMed ID: 25513751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells.
    Ambade SB; Ambade RB; Eom SH; Baek MJ; Bagde SS; Mane RS; Lee SH
    Nanoscale; 2016 Mar; 8(9):5024-36. PubMed ID: 26864170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-efficiency inverted polymer solar cells with double interlayer.
    Subbiah J; Amb CM; Irfan I; Gao Y; Reynolds JR; So F
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):866-70. PubMed ID: 22225481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells.
    Yin Z; Wu S; Zhou X; Huang X; Zhang Q; Boey F; Zhang H
    Small; 2010 Jan; 6(2):307-12. PubMed ID: 20039255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficiency Enhancement of Inverted Structure Perovskite Solar Cells via Oleamide Doping of PCBM Electron Transport Layer.
    Xia F; Wu Q; Zhou P; Li Y; Chen X; Liu Q; Zhu J; Dai S; Lu Y; Yang S
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13659-65. PubMed ID: 26053101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles.
    Cheng Y; Yang QD; Xiao J; Xue Q; Li HW; Guan Z; Yip HL; Tsang SW
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19986-93. PubMed ID: 26280249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Well-aligned Vertically Oriented ZnO Nanorod Arrays and their Application in Inverted Small Molecule Solar Cells.
    Lin MY; Wu SH; Hsiao LJ; Budiawan W; Chen SL; Tu WC; Lee CY; Chang YC; Chu CW
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29757268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Air-stable efficient inverted polymer solar cells using solution-processed nanocrystalline ZnO interfacial layer.
    Tan MJ; Zhong S; Li J; Chen Z; Chen W
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4696-701. PubMed ID: 23646864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonconjugated anionic polyelectrolyte as an interfacial layer for the organic optoelectronic devices.
    Lim GE; Ha YE; Jo MY; Park J; Kang YC; Kim JH
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6508-13. PubMed ID: 23820385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interface passivation and electron transport improvement via employing calcium fluoride for polymer solar cells.
    Tang Y; Pang Y; Li X; Zong B; Kang B; Silva SRP; Lu G
    J Colloid Interface Sci; 2020 Mar; 562():142-148. PubMed ID: 31838350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.