These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 24606632)

  • 41. Surface modification of a ZnO electron-collecting layer using atomic layer deposition to fabricate high-performing inverted organic photovoltaics.
    Kim KD; Lim DC; Hu J; Kwon JD; Jeong MG; Seo HO; Lee JY; Jang KY; Lim JH; Lee KH; Jeong Y; Kim YD; Cho S
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8718-23. PubMed ID: 23951998
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Controllable Spatial Configuration on Cathode Interface for Enhanced Photovoltaic Performance and Device Stability.
    Li J; Duan C; Wang N; Zhao C; Han W; Jiang L; Wang J; Zhao Y; Huang C; Jiu T
    ACS Appl Mater Interfaces; 2018 May; 10(20):17401-17408. PubMed ID: 29708336
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of polyelectrolyte electron collection layer counteranion on the properties of polymer solar cells.
    Do TT; Hong HS; Ha YE; Park J; Kang YC; Kim JH
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3335-41. PubMed ID: 25611078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficiency and air-stability improvement of flexible inverted polymer solar cells using ZnO/poly(ethylene glycol) hybrids as cathode buffer layers.
    Hu T; Li F; Yuan K; Chen Y
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5763-70. PubMed ID: 23738498
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Orienting the Microstructure Evolution of Copper Phthalocyanine as an Anode Interlayer in Inverted Polymer Solar Cells for High Performance.
    Li Z; Liu C; Zhang X; Li S; Zhang X; Guo J; Guo W; Zhang L; Ruan S
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32044-32053. PubMed ID: 28836429
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Morphologic improvement of the PBDTTT-C and PC71BM blend film with mixed solvent for high-performance inverted polymer solar cells.
    Chen HY; Lin SH; Sun JY; Hsu CH; Lan S; Lin CF
    Nanotechnology; 2013 Dec; 24(48):484009. PubMed ID: 24196567
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of film thickness in hybrid polymer/polymer solar cells with zinc oxide nanoparticles.
    Nam S; Kim J; Kim H; Kim Y
    J Nanosci Nanotechnol; 2011 Jul; 11(7):5733-6. PubMed ID: 22121599
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimization of an Electron Transport Layer to Enhance the Power Conversion Efficiency of Flexible Inverted Organic Solar Cells.
    Lee KH; Kumar B; Park HJ; Kim SW
    Nanoscale Res Lett; 2010 Aug; 5(12):1908-12. PubMed ID: 21170411
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural Properties of Zinc Oxide Nanorods Grown on Al-Doped Zinc Oxide Seed Layer and Their Applications in Dye-Sensitized Solar Cells.
    Kim KH; Utashiro K; Abe Y; Kawamura M
    Materials (Basel); 2014 Mar; 7(4):2522-2533. PubMed ID: 28788581
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of highly transparent seedless ZnO nanorods engineered for inverted polymer solar cells.
    Ambade SB; Ambade RB; Lee W; Mane RS; Yoon SC; Lee SH
    Nanoscale; 2014 Oct; 6(20):12130-41. PubMed ID: 25201162
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced Performance of Inverted Polymer Solar Cells by Combining ZnO Nanoparticles and Poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyfluorene)] as Electron Transport Layer.
    Han C; Cheng Y; Chen L; Qian L; Yang Z; Xue W; Zhang T; Yang Y; Cao W
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3301-7. PubMed ID: 26754052
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interfacial Modifier Having Julolidine for the Cathode Buffer Layer in PTB-7:PC
    Eom SH; Do HJ; Lee J; Jung IH; Yoon SC; Lee C
    J Nanosci Nanotechnol; 2018 Oct; 18(10):7037-7042. PubMed ID: 29954529
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Embedding plasmonic gold nanoparticles in a ZnO layer enhanced the performance of inverted organic solar cells based on an indacenodithieno[3,2-
    Waketola AG; Pfukwa C; Neethling P; Bosman G; Genene Z; Wang E; Mammo W; Hone FG; Tegegne NA
    RSC Adv; 2023 May; 13(24):16175-16184. PubMed ID: 37260711
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solution processed ZnO hybrid nanocomposite with tailored work function for improved electron transport layer in organic photovoltaic devices.
    Lee YJ; Wang J; Cheng SR; Hsu JW
    ACS Appl Mater Interfaces; 2013 Sep; 5(18):9128-33. PubMed ID: 23981136
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture.
    Chang JY; Lin JM; Su LF; Chang CF
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8740-52. PubMed ID: 23937511
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Superstrate CuInS2 photovoltaics with enhanced performance using a CdS/ZnO nanorod array.
    Lee D; Yong K
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6758-65. PubMed ID: 23163478
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly efficient inverted polymer solar cells by using solution processed MgO/ZnO composite interfacial layers.
    Huang S; Kang B; Duan L; Zhang D
    J Colloid Interface Sci; 2021 Feb; 583():178-187. PubMed ID: 33002690
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficiency enhancement of polymer solar cells by applying poly(vinylpyrrolidone) as a cathode buffer layer via spin coating or self-assembly.
    Wang H; Zhang W; Xu C; Bi X; Chen B; Yang S
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):26-34. PubMed ID: 23231883
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low-Temperature UVO-Sintered ZnO/SnO
    Zou Z; Li F; Fang J; Chen M; Sun X; Li C; Tao J; Liao G; Zhang J
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144937
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-efficiency AgInS(2)-modified ZnO nanotube array photoelectrodes for all-solid-state hybrid solar cells.
    Han J; Liu Z; Guo K; Ya J; Zhao Y; Zhang X; Hong T; Liu J
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17119-25. PubMed ID: 25208689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.