These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 24606762)
1. Morphological and chemical stability of silicon nanostructures and their molecular overlayers under physiological conditions: towards long-term implantable nanoelectronic biosensors. Peled A; Pevzner A; Peretz Soroka H; Patolsky F J Nanobiotechnology; 2014 Mar; 12():7. PubMed ID: 24606762 [TBL] [Abstract][Full Text] [Related]
2. Long term stability of nanowire nanoelectronics in physiological environments. Zhou W; Dai X; Fu TM; Xie C; Liu J; Lieber CM Nano Lett; 2014 Mar; 14(3):1614-9. PubMed ID: 24479700 [TBL] [Abstract][Full Text] [Related]
3. Monolithic integration of a silicon nanowire field-effect transistors array on a complementary metal-oxide semiconductor chip for biochemical sensor applications. Livi P; Kwiat M; Shadmani A; Pevzner A; Navarra G; Rothe J; Stettler A; Chen Y; Patolsky F; Hierlemann A Anal Chem; 2015 Oct; 87(19):9982-90. PubMed ID: 26348408 [TBL] [Abstract][Full Text] [Related]
4. Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors. Lu N; Gao A; Dai P; Li T; Wang Y; Gao X; Song S; Fan C; Wang Y Methods; 2013 Oct; 63(3):212-8. PubMed ID: 23886908 [TBL] [Abstract][Full Text] [Related]
5. Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm. Kulkarni GS; Zang W; Zhong Z Acc Chem Res; 2016 Nov; 49(11):2578-2586. PubMed ID: 27668314 [TBL] [Abstract][Full Text] [Related]
6. All-(111) surface silicon nanowires: selective functionalization for biosensing applications. Masood MN; Chen S; Carlen ET; van den Berg A ACS Appl Mater Interfaces; 2010 Dec; 2(12):3422-8. PubMed ID: 21090766 [TBL] [Abstract][Full Text] [Related]
7. Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive. Shen MY; Li BR; Li YK Biosens Bioelectron; 2014 Oct; 60():101-11. PubMed ID: 24787124 [TBL] [Abstract][Full Text] [Related]
8. Detection of ultra-low protein concentrations with the simplest possible field effect transistor. Georgiev YM; Petkov N; Yu R; Nightingale AM; Buitrago E; Lotty O; deMello JC; Ionescu A; Holmes JD Nanotechnology; 2019 Aug; 30(32):324001. PubMed ID: 30986779 [TBL] [Abstract][Full Text] [Related]
9. Silicon Nanowire Field Effect Transistor Sensors with Minimal Sensor-to-Sensor Variations and Enhanced Sensing Characteristics. Zafar S; D'Emic C; Jagtiani A; Kratschmer E; Miao X; Zhu Y; Mo R; Sosa N; Hamann H; Shahidi G; Riel H ACS Nano; 2018 Jul; 12(7):6577-6587. PubMed ID: 29932634 [TBL] [Abstract][Full Text] [Related]
10. High-k dielectric Al₂O₃ nanowire and nanoplate field effect sensors for improved pH sensing. Reddy B; Dorvel BR; Go J; Nair PR; Elibol OH; Credo GM; Daniels JS; Chow EK; Su X; Varma M; Alam MA; Bashir R Biomed Microdevices; 2011 Apr; 13(2):335-44. PubMed ID: 21203849 [TBL] [Abstract][Full Text] [Related]
11. Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Presnova G; Presnov D; Krupenin V; Grigorenko V; Trifonov A; Andreeva I; Ignatenko O; Egorov A; Rubtsova M Biosens Bioelectron; 2017 Feb; 88():283-289. PubMed ID: 27567265 [TBL] [Abstract][Full Text] [Related]
12. Complementary metal oxide semiconductor compatible silicon nanowires-on-a-chip: fabrication and preclinical validation for the detection of a cancer prognostic protein marker in serum. Tran DP; Wolfrum B; Stockmann R; Pai JH; Pourhassan-Moghaddam M; Offenhäusser A; Thierry B Anal Chem; 2015 Feb; 87(3):1662-8. PubMed ID: 25531273 [TBL] [Abstract][Full Text] [Related]
13. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062 [TBL] [Abstract][Full Text] [Related]
14. Growth of gold-manganese oxide nanostructures on a 3D origami device for glucose-oxidase label based electrochemical immunosensor. Li L; Xu J; Zheng X; Ma C; Song X; Ge S; Yu J; Yan M Biosens Bioelectron; 2014 Nov; 61():76-82. PubMed ID: 24858676 [TBL] [Abstract][Full Text] [Related]
15. Few electron limit of n-type metal oxide semiconductor single electron transistors. Prati E; De Michielis M; Belli M; Cocco S; Fanciulli M; Kotekar-Patil D; Ruoff M; Kern DP; Wharam DA; Verduijn J; Tettamanzi GC; Rogge S; Roche B; Wacquez R; Jehl X; Vinet M; Sanquer M Nanotechnology; 2012 Jun; 23(21):215204. PubMed ID: 22552118 [TBL] [Abstract][Full Text] [Related]
16. Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Kim K; Park C; Kwon D; Kim D; Meyyappan M; Jeon S; Lee JS Biosens Bioelectron; 2016 Mar; 77():695-701. PubMed ID: 26496224 [TBL] [Abstract][Full Text] [Related]
17. Quantum confinement induced performance enhancement in sub-5-nm lithographic Si nanowire transistors. Trivedi K; Yuk H; Floresca HC; Kim MJ; Hu W Nano Lett; 2011 Apr; 11(4):1412-7. PubMed ID: 21375286 [TBL] [Abstract][Full Text] [Related]
18. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Gao N; Gao T; Yang X; Dai X; Zhou W; Zhang A; Lieber CM Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14633-14638. PubMed ID: 27930344 [TBL] [Abstract][Full Text] [Related]
19. MMP-2 detective silicon nanowire biosensor using enzymatic cleavage reaction. Choi JH; Kim H; Kim HS; Um SH; Choi JW; Oh BK J Biomed Nanotechnol; 2013 Apr; 9(4):732-5. PubMed ID: 23621035 [TBL] [Abstract][Full Text] [Related]
20. High performance of silicon nanowire-based biosensors using a high-k stacked sensing thin film. Bae TE; Jang HJ; Yang JH; Cho WJ ACS Appl Mater Interfaces; 2013 Jun; 5(11):5214-8. PubMed ID: 23651227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]