BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 24606928)

  • 1. Local viscoelastic properties of live cells investigated using dynamic and quasi-static atomic force microscopy methods.
    Cartagena A; Raman A
    Biophys J; 2014 Mar; 106(5):1033-43. PubMed ID: 24606928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy.
    Raman A; Trigueros S; Cartagena A; Stevenson AP; Susilo M; Nauman E; Contera SA
    Nat Nanotechnol; 2011 Nov; 6(12):809-14. PubMed ID: 22081213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast, multi-frequency, and quantitative nanomechanical mapping of live cells using the atomic force microscope.
    Cartagena-Rivera AX; Wang WH; Geahlen RL; Raman A
    Sci Rep; 2015 Jun; 5():11692. PubMed ID: 26118423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping heterogeneity of cellular mechanics by multi-harmonic atomic force microscopy.
    Efremov YM; Cartagena-Rivera AX; Athamneh AIM; Suter DM; Raman A
    Nat Protoc; 2018 Oct; 13(10):2200-2216. PubMed ID: 30218102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element modeling of living cells for AFM indentation-based biomechanical characterization.
    Liu Y; Mollaeian K; Ren J
    Micron; 2019 Jan; 116():108-115. PubMed ID: 30366196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing elasticity and adhesion of live cells by atomic force microscopy indentation.
    Sirghi L; Ponti J; Broggi F; Rossi F
    Eur Biophys J; 2008 Jul; 37(6):935-45. PubMed ID: 18365186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.
    Efremov YM; Wang WH; Hardy SD; Geahlen RL; Raman A
    Sci Rep; 2017 May; 7(1):1541. PubMed ID: 28484282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methodologies and models for measuring viscoelastic properties of cancer cells: Towards a universal classification.
    Ovalle-Flores L; Rodríguez-Nieto M; Zárate-Triviño D; Rodríguez-Padilla C; Menchaca JL
    J Mech Behav Biomed Mater; 2023 Apr; 140():105734. PubMed ID: 36848744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscoelastic mapping of cells based on fast force volume and PeakForce Tapping.
    Efremov YM; Shpichka AI; Kotova SL; Timashev PS
    Soft Matter; 2019 Jul; 15(27):5455-5463. PubMed ID: 31231747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency dependence of viscous and viscoelastic dissipation in coated micro-cantilevers from noise measurement.
    Paolino P; Bellon L
    Nanotechnology; 2009 Oct; 20(40):405705. PubMed ID: 19738311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined atomic force microscopy (AFM) and traction force microscopy (TFM) reveals a correlation between viscoelastic material properties and contractile prestress of living cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Soft Matter; 2019 Feb; 15(8):1721-1729. PubMed ID: 30657157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative microelastic mapping of living cells by atomic force microscopy.
    A-Hassan E; Heinz WF; Antonik MD; D'Costa NP; Nageswaran S; Schoenenberger CA; Hoh JH
    Biophys J; 1998 Mar; 74(3):1564-78. PubMed ID: 9512052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The viscoelasticity of adherent cells follows a single power-law with distinct local variations within a single cell and across cell lines.
    Sanchez JG; Espinosa FM; Miguez R; Garcia R
    Nanoscale; 2021 Oct; 13(38):16339-16348. PubMed ID: 34581722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-scale characterization and analysis of cellular viscoelastic mechanical phenotypes by atomic force microscopy.
    Zeng Y; Liu X; Wang Z; Gao W; Zhang S; Wang Y; Liu Y; Yu H
    Microsc Res Tech; 2024 Jun; 87(6):1157-1167. PubMed ID: 38284615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy.
    Mahaffy RE; Park S; Gerde E; Käs J; Shih CK
    Biophys J; 2004 Mar; 86(3):1777-93. PubMed ID: 14990504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of the Johnson-Kendall-Roberts model in AFM-based mechanical measurements on cells and gel.
    Efremov YM; Bagrov DV; Kirpichnikov MP; Shaitan KV
    Colloids Surf B Biointerfaces; 2015 Oct; 134():131-9. PubMed ID: 26186106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips.
    Rico F; Roca-Cusachs P; Gavara N; Farré R; Rotger M; Navajas D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021914. PubMed ID: 16196611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping cellular nanoscale viscoelasticity and relaxation times relevant to growth of living Arabidopsis thaliana plants using multifrequency AFM.
    Seifert J; Kirchhelle C; Moore I; Contera S
    Acta Biomater; 2021 Feb; 121():371-382. PubMed ID: 33309827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelastic properties of demineralized human dentin measured in water with atomic force microscope (AFM)-based indentation.
    Balooch M; Wu-Magidi IC; Balazs A; Lundkvist AS; Marshall SJ; Marshall GW; Siekhaus WJ; Kinney JH
    J Biomed Mater Res; 1998 Jun; 40(4):539-44. PubMed ID: 9599029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measuring viscoelasticity of soft biological samples using atomic force microscopy.
    Efremov YM; Okajima T; Raman A
    Soft Matter; 2020 Jan; 16(1):64-81. PubMed ID: 31720656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.