BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 24607230)

  • 1. Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors.
    Hansen KB; Ogden KK; Yuan H; Traynelis SF
    Neuron; 2014 Mar; 81(5):1084-1096. PubMed ID: 24607230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacology of triheteromeric N-Methyl-D-Aspartate Receptors.
    Cheriyan J; Balsara RD; Hansen KB; Castellino FJ
    Neurosci Lett; 2016 Mar; 617():240-6. PubMed ID: 26917100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of Triheteromeric
    Yi F; Zachariassen LG; Dorsett KN; Hansen KB
    Mol Pharmacol; 2018 May; 93(5):453-467. PubMed ID: 29483146
    [No Abstract]   [Full Text] [Related]  

  • 4. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits.
    Lind GE; Mou TC; Tamborini L; Pomper MG; De Micheli C; Conti P; Pinto A; Hansen KB
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6942-E6951. PubMed ID: 28760974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct pharmacological monitoring of the developmental switch in NMDA receptor subunit composition using TCN 213, a GluN2A-selective, glycine-dependent antagonist.
    McKay S; Griffiths NH; Butters PA; Thubron EB; Hardingham GE; Wyllie DJ
    Br J Pharmacol; 2012 Jun; 166(3):924-37. PubMed ID: 22022974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic NMDA receptors in basolateral amygdala principal neurons are triheteromeric proteins: physiological role of GluN2B subunits.
    Delaney AJ; Sedlak PL; Autuori E; Power JM; Sah P
    J Neurophysiol; 2013 Mar; 109(5):1391-402. PubMed ID: 23221411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors.
    Kvist T; Greenwood JR; Hansen KB; Traynelis SF; Bräuner-Osborne H
    Neuropharmacology; 2013 Dec; 75():324-36. PubMed ID: 23973313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Cell-Surface Expression of Triheteromeric NMDA Receptors.
    Yi F; Traynelis SF; Hansen KB
    Methods Mol Biol; 2017; 1677():145-162. PubMed ID: 28986871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and pharmacological properties of triheteromeric GluN1/2B/2D NMDA receptors.
    Yi F; Bhattacharya S; Thompson CM; Traynelis SF; Hansen KB
    J Physiol; 2019 Nov; 597(22):5495-5514. PubMed ID: 31541561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triheteromeric NMDA receptors: from structure to synaptic physiology.
    Stroebel D; Casado M; Paoletti P
    Curr Opin Physiol; 2018 Apr; 2():1-12. PubMed ID: 29682629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TCN 201 selectively blocks GluN2A-containing NMDARs in a GluN1 co-agonist dependent but non-competitive manner.
    Edman S; McKay S; Macdonald LJ; Samadi M; Livesey MR; Hardingham GE; Wyllie DJ
    Neuropharmacology; 2012 Sep; 63(3):441-9. PubMed ID: 22579927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opportunities for Precision Treatment of
    Han W; Yuan H; Allen JP; Kim S; Shaulsky GH; Perszyk RE; Traynelis SF; Myers SJ
    J Pharmacol Exp Ther; 2022 Apr; 381(1):54-66. PubMed ID: 35110392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of GluN2A and GluN2B gain-of-function epilepsy mutations on synaptic currents mediated by diheteromeric and triheteromeric NMDA receptors.
    Chen X; Keramidas A; Harvey RJ; Lynch JW
    Neurobiol Dis; 2020 Jul; 140():104850. PubMed ID: 32247039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional assessment of triheteromeric NMDA receptors containing a human variant associated with epilepsy.
    Marwick KFM; Hansen KB; Skehel PA; Hardingham GE; Wyllie DJA
    J Physiol; 2019 Mar; 597(6):1691-1704. PubMed ID: 30604514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Cell-Surface Expression of Triheteromeric NMDA Receptors.
    Yi F; Traynelis SF; Hansen KB
    Methods Mol Biol; 2024; 2799():55-77. PubMed ID: 38727903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allosteric Interactions between NMDA Receptor Subunits Shape the Developmental Shift in Channel Properties.
    Sun W; Hansen KB; Jahr CE
    Neuron; 2017 Apr; 94(1):58-64.e3. PubMed ID: 28384476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deconstruction - Reconstruction: Analysis of the Crucial Structural Elements of GluN2B-Selective, Negative Allosteric NMDA Receptor Modulators with 3-Benzazepine Scaffold.
    Ritter N; Korff M; Markus A; Schepmann D; Seebohm G; Schreiber JA; Wünsch B
    Cell Physiol Biochem; 2021 Mar; 55(S3):1-13. PubMed ID: 33656308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling NMDA receptor subunit composition using ectopic retention signals.
    Stroebel D; Carvalho S; Grand T; Zhu S; Paoletti P
    J Neurosci; 2014 Dec; 34(50):16630-6. PubMed ID: 25505316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative allosteric modulation of GluN1/GluN3 NMDA receptors.
    Zhu Z; Yi F; Epplin MP; Liu D; Summer SL; Mizu R; Shaulsky G; XiangWei W; Tang W; Burger PB; Menaldino DS; Myers SJ; Liotta DC; Hansen KB; Yuan H; Traynelis SF
    Neuropharmacology; 2020 Oct; 176():108117. PubMed ID: 32389749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors.
    Karakas E; Simorowski N; Furukawa H
    Nature; 2011 Jun; 475(7355):249-53. PubMed ID: 21677647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.