BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 24607312)

  • 1. Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor.
    Tuantet K; Temmink H; Zeeman G; Janssen M; Wijffels RH; Buisman CJ
    Water Res; 2014 May; 55():162-74. PubMed ID: 24607312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal.
    Min M; Wang L; Li Y; Mohr MJ; Hu B; Zhou W; Chen P; Ruan R
    Appl Biochem Biotechnol; 2011 Sep; 165(1):123-37. PubMed ID: 21494756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentrated microalgae cultivation in treated sewage by membrane photobioreactor operated in batch flow mode.
    Gao F; Yang ZH; Li C; Wang YJ; Jin WH; Deng YB
    Bioresour Technol; 2014 Sep; 167():441-6. PubMed ID: 25006019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor.
    Blanken W; Janssen M; Cuaresma M; Libor Z; Bhaiji T; Wijffels RH
    Biotechnol Bioeng; 2014 Dec; 111(12):2436-45. PubMed ID: 24895246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Urban nutrient recovery from fresh human urine through cultivation of Chlorella sorokiniana.
    Zhang S; Lim CY; Chen CL; Liu H; Wang JY
    J Environ Manage; 2014 Dec; 145():129-36. PubMed ID: 25016102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of nutrient removal and microalgal biomass production on an industrial waste-stream by application of the deceleration-stat technique.
    Van Wagenen J; Pape ML; Angelidaki I
    Water Res; 2015 May; 75():301-11. PubMed ID: 25792276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid production of microalga Chlorella sorokiniana CY1 is improved by light source arrangement, bioreactor operation mode and deep-sea water supplements.
    Chen CY; Chang HY
    Biotechnol J; 2016 Mar; 11(3):356-62. PubMed ID: 26632521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Tris-(hydroxymethyl)-amino methane on microalgae biomass growth in a photobioreactor.
    Nguyen TT; Bui XT; Pham MD; Guo W; Ngo HH
    Bioresour Technol; 2016 May; 208():1-6. PubMed ID: 26913641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing microalga
    Cheah WY; Show PL; Yap YJ; Mohd Zaid HF; Lam MK; Lim JW; Ho YC; Tao Y
    Bioengineered; 2020 Dec; 11(1):61-69. PubMed ID: 31884878
    [No Abstract]   [Full Text] [Related]  

  • 10. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous microalgae cultivation in a photobioreactor.
    Tang H; Chen M; Ng KY; Salley SO
    Biotechnol Bioeng; 2012 Oct; 109(10):2468-74. PubMed ID: 22488253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient removal and lipid accumulation properties of newly isolated microalgal strains.
    Han L; Pei H; Hu W; Han F; Song M; Zhang S
    Bioresour Technol; 2014 Aug; 165():38-41. PubMed ID: 24731916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance.
    Cuaresma M; Janssen M; VĂ­lchez C; Wijffels RH
    Biotechnol Bioeng; 2009 Oct; 104(2):352-9. PubMed ID: 19517522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon dioxide capture and nutrients removal utilizing treated sewage by concentrated microalgae cultivation in a membrane photobioreactor.
    Honda R; Boonnorat J; Chiemchaisri C; Chiemchaisri W; Yamamoto K
    Bioresour Technol; 2012 Dec; 125():59-64. PubMed ID: 23023237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions.
    Zhou X; Xia L; Ge H; Zhang D; Hu C
    Bioresour Technol; 2013 Jun; 138():131-5. PubMed ID: 23612171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.
    Ren H; Tuo J; Addy MM; Zhang R; Lu Q; Anderson E; Chen P; Ruan R
    Bioresour Technol; 2017 Dec; 245(Pt A):1130-1138. PubMed ID: 28962086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions.
    Kim S; Park JE; Cho YB; Hwang SJ
    Bioresour Technol; 2013 Sep; 144():8-13. PubMed ID: 23850820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species.
    Su Y; Mennerich A; Urban B
    Bioresour Technol; 2012 Nov; 124():157-62. PubMed ID: 22995160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent.
    Gao F; Yang ZH; Li C; Zeng GM; Ma DH; Zhou L
    Bioresour Technol; 2015 Mar; 179():8-12. PubMed ID: 25514396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategic implementation of phosphorus repletion strategy in continuous two-stage cultivation of Chlorella sp. HS2: Evaluation for biofuel applications.
    Nayak M; Suh WI; Cho JM; Kim HS; Lee B; Chang YK
    J Environ Manage; 2020 Oct; 271():111041. PubMed ID: 32778320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.