BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

574 related articles for article (PubMed ID: 24607397)

  • 1. Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design.
    Kaifas D; Malleret L; Kumar N; Fétimi W; Claeys-Bruno M; Sergent M; Doumenq P
    Sci Total Environ; 2014 May; 481():335-42. PubMed ID: 24607397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron.
    Rajajayavel SR; Ghoshal S
    Water Res; 2015 Jul; 78():144-53. PubMed ID: 25935369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe
    Phenrat T; Schoenfelder D; Kirschling TL; Tilton RD; Lowry GV
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7157-7169. PubMed ID: 26233743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II).
    Choi K; Lee W
    J Hazard Mater; 2012 Apr; 211-212():146-53. PubMed ID: 22079185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution.
    Dong H; Zhang C; Deng J; Jiang Z; Zhang L; Cheng Y; Hou K; Tang L; Zeng G
    Water Res; 2018 May; 135():1-10. PubMed ID: 29438739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead.
    Kim H; Hong HJ; Jung J; Kim SH; Yang JW
    J Hazard Mater; 2010 Apr; 176(1-3):1038-43. PubMed ID: 20042289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Groundwater geochemical constituents controlling the reductive dechlorination of TCE by nZVI: Evidence from diverse anaerobic corrosion mechanisms of nZVI.
    Yang X; Zhang C; Liu F; Tang J
    Chemosphere; 2021 Jan; 262():127707. PubMed ID: 32755691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.
    Ahmad A; Gu X; Li L; Lv S; Xu Y; Guo X
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17876-85. PubMed ID: 26162447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution.
    Liu Y; Phenrat T; Lowry GV
    Environ Sci Technol; 2007 Nov; 41(22):7881-7. PubMed ID: 18075103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of oxidants on in situ treatment of a DNAPL source by nanoscale zero-valent iron: A field study.
    Ahn JY; Kim C; Kim HS; Hwang KY; Hwang I
    Water Res; 2016 Dec; 107():57-65. PubMed ID: 27837733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the effects of nanoscale zero-valent iron (nZVI) dispersants on intrinsic biodegradation of trichloroethylene (TCE).
    Chang YC; Huang SC; Chen KF
    Water Sci Technol; 2014; 69(11):2357-63. PubMed ID: 24901632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: direct observation and quantification.
    Wang Q; Jeong SW; Choi H
    J Hazard Mater; 2012 Apr; 213-214():299-310. PubMed ID: 22386819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorbed polyelectrolyte coatings decrease Fe(0) nanoparticle reactivity with TCE in water: conceptual model and mechanisms.
    Phenrat T; Liu Y; Tilton RD; Lowry GV
    Environ Sci Technol; 2009 Mar; 43(5):1507-14. PubMed ID: 19350927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid.
    Kim HS; Ahn JY; Kim C; Lee S; Hwang I
    Chemosphere; 2014 Oct; 113():93-100. PubMed ID: 25065795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept.
    Phenrat T; Thongboot T; Lowry GV
    Environ Sci Technol; 2016 Jan; 50(2):872-80. PubMed ID: 26654836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formulation design for target delivery of iron nanoparticles to TCE zones.
    Wang Z; Acosta E
    J Contam Hydrol; 2013 Dec; 155():9-19. PubMed ID: 24096200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersant-modified iron nanoparticles for mobility enhancement and TCE degradation: a comparison study.
    Peng YP; Chen TY; Wu CY; Chang YC; Chen KF
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34157-34166. PubMed ID: 30456616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of geochemical properties on degradation of trichloroethylene by stabilized zerovalent iron nanoparticle with Na-acrylic copolymer.
    Chen MY; Su YF; Shih YH
    J Environ Manage; 2014 Nov; 144():88-92. PubMed ID: 24929499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance and Mechanisms of Sulfidated Nanoscale Zero-Valent Iron Materials for Toxic TCE Removal from the Groundwater.
    Lang Y; Yu Y; Zou H; Ye J; Zhang S
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.