These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24607450)

  • 1. In situ groundwater and sediment bioremediation: barriers and perspectives at European contaminated sites.
    Majone M; Verdini R; Aulenta F; Rossetti S; Tandoi V; Kalogerakis N; Agathos S; Puig S; Zanaroli G; Fava F
    N Biotechnol; 2015 Jan; 32(1):133-46. PubMed ID: 24607450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal variations in natural attenuation of chlorinated aliphatic hydrocarbons in eutrophic river sediments impacted by a contaminated groundwater plume.
    Hamonts K; Kuhn T; Vos J; Maesen M; Kalka H; Smidt H; Springael D; Meckenstock RU; Dejonghe W
    Water Res; 2012 Apr; 46(6):1873-88. PubMed ID: 22280951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing
    Madison AS; Sorsby SJ; Wang Y; Key TA
    Front Microbiol; 2022; 13():1005871. PubMed ID: 36845972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ source zone sediment mixing coupled to groundwater biostimulation to enhance phenol natural attenuation.
    da Silva ML; Wendt MF; de Oliveira JC; Schneider MR
    Water Sci Technol; 2012; 66(1):130-7. PubMed ID: 22678209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remediation technologies for heavy metal contaminated groundwater.
    Hashim MA; Mukhopadhyay S; Sahu JN; Sengupta B
    J Environ Manage; 2011 Oct; 92(10):2355-88. PubMed ID: 21708421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ bioremediation of monoaromatic pollutants in groundwater: a review.
    Farhadian M; Vachelard C; Duchez D; Larroche C
    Bioresour Technol; 2008 Sep; 99(13):5296-308. PubMed ID: 18054222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-assisted groundwater bioremediation: fundamentals, challenges and future perspectives.
    Li WW; Yu HQ
    Bioresour Technol; 2015 Nov; 196():677-84. PubMed ID: 26227572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application.
    Gomes HI; Dias-Ferreira C; Ribeiro AB
    Sci Total Environ; 2013 Feb; 445-446():237-60. PubMed ID: 23334318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the potential of biological treatment for arsenic contaminated soils and groundwater.
    Wang S; Zhao X
    J Environ Manage; 2009 Jun; 90(8):2367-76. PubMed ID: 19269736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging technologies in bioremediation: constraints and opportunities.
    Rayu S; Karpouzas DG; Singh BK
    Biodegradation; 2012 Nov; 23(6):917-26. PubMed ID: 22836784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination.
    Caterina D; Flores Orozco A; Nguyen F
    J Contam Hydrol; 2017 Jun; 201():19-29. PubMed ID: 28442237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linking bacterial diversity and geochemistry of uranium-contaminated groundwater.
    Cho K; Zholi A; Frabutt D; Flood M; Floyd D; Tiquia SM
    Environ Technol; 2012; 33(13-15):1629-40. PubMed ID: 22988623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New perspectives on microbial dehalogenation of chlorinated solvents: insights from the field.
    Lee MD; Odom JM; Buchanan RJ
    Annu Rev Microbiol; 1998; 52():423-52. PubMed ID: 9891804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oil spill problems and sustainable response strategies through new technologies.
    Ivshina IB; Kuyukina MS; Krivoruchko AV; Elkin AA; Makarov SO; Cunningham CJ; Peshkur TA; Atlas RM; Philp JC
    Environ Sci Process Impacts; 2015 Jul; 17(7):1201-19. PubMed ID: 26089295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relevance of speciation in the remediation of soils and sediments contaminated by metallic elements--an overview and examples from Central Scotland, UK.
    Hursthouse AS
    J Environ Monit; 2001 Feb; 3(1):49-60. PubMed ID: 11253019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosurfactant-induced remediation of contaminated marine sediments: Current knowledge and future perspectives.
    Dell'Anno F; Sansone C; Ianora A; Dell'Anno A
    Mar Environ Res; 2018 Jun; 137():196-205. PubMed ID: 29615275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermally enhanced bioremediation: A review of the fundamentals and applications in soil and groundwater remediation.
    Wang Q; Guo S; Ali M; Song X; Tang Z; Zhang Z; Zhang M; Luo Y
    J Hazard Mater; 2022 Jul; 433():128749. PubMed ID: 35364527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulating sediment bioremediation with benthic microbial fuel cells.
    Li WW; Yu HQ
    Biotechnol Adv; 2015; 33(1):1-12. PubMed ID: 25560929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance of solid-phase U(VI) to microbial reduction during in situ bioremediation of uranium-contaminated groundwater.
    Ortiz-Bernad I; Anderson RT; Vrionis HA; Lovley DR
    Appl Environ Microbiol; 2004 Dec; 70(12):7558-60. PubMed ID: 15574961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reviewing the Bioremediation of Contaminants in Groundwater: Investigations over 40 Years Provide Insights into What's Achievable.
    Davis GB
    Front Biosci (Elite Ed); 2023 Jul; 15(3):16. PubMed ID: 37743231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.