These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24607459)

  • 21. A biofuel cell with electrochemically switchable and tunable power output.
    Katz E; Willner I
    J Am Chem Soc; 2003 Jun; 125(22):6803-13. PubMed ID: 12769592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatic biofuel cell based on anode and cathode powered by ethanol.
    Ramanavicius A; Kausaite A; Ramanaviciene A
    Biosens Bioelectron; 2008 Dec; 24(4):767-72. PubMed ID: 18693008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Air diffusion biocathode with CueO as electrocatalyst adsorbed on carbon particle-modified electrodes.
    Kontani R; Tsujimura S; Kano K
    Bioelectrochemistry; 2009 Sep; 76(1-2):10-3. PubMed ID: 19345156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability.
    Rengaraj S; Kavanagh P; Leech D
    Biosens Bioelectron; 2011 Dec; 30(1):294-9. PubMed ID: 22005596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of Copper as a Trigger for the in Vivo Activity of E. coli Laccase CueO: A Simple Tool for Biosynthetic Purposes.
    Decembrino D; Girhard M; Urlacher VB
    Chembiochem; 2021 Apr; 22(8):1470-1479. PubMed ID: 33332702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A wireless transmission system powered by an enzyme biofuel cell implanted in an orange.
    MacVittie K; Conlon T; Katz E
    Bioelectrochemistry; 2015 Dec; 106(Pt A):28-33. PubMed ID: 25467135
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen-reducing enzyme cathodes produced from SLAC, a small laccase from Streptomyces coelicolor.
    Gallaway J; Wheeldon I; Rincon R; Atanassov P; Banta S; Barton SC
    Biosens Bioelectron; 2008 Mar; 23(8):1229-35. PubMed ID: 18096378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modifications of laccase activities of copper efflux oxidase, CueO by synergistic mutations in the first and second coordination spheres of the type I copper center.
    Kataoka K; Kogi H; Tsujimura S; Sakurai T
    Biochem Biophys Res Commun; 2013 Feb; 431(3):393-7. PubMed ID: 23337502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biofuel cell for generating power from methanol substrate using alcohol oxidase bioanode and air-breathed laccase biocathode.
    Das M; Barbora L; Das P; Goswami P
    Biosens Bioelectron; 2014 Sep; 59():184-91. PubMed ID: 24727604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biofuel cell and phenolic biosensor based on acid-resistant laccase-glutaraldehyde functionalized chitosan-multiwalled carbon nanotubes nanocomposite film.
    Tan Y; Deng W; Ge B; Xie Q; Huang J; Yao S
    Biosens Bioelectron; 2009 Mar; 24(7):2225-31. PubMed ID: 19153037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen peroxide produced by glucose oxidase affects the performance of laccase cathodes in glucose/oxygen fuel cells: FAD-dependent glucose dehydrogenase as a replacement.
    Milton RD; Giroud F; Thumser AE; Minteer SD; Slade RC
    Phys Chem Chem Phys; 2013 Nov; 15(44):19371-9. PubMed ID: 24121716
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement of a direct electron transfer-type fructose/dioxygen biofuel cell with a substrate-modified biocathode.
    So K; Kawai S; Hamano Y; Kitazumi Y; Shirai O; Hibi M; Ogawa J; Kano K
    Phys Chem Chem Phys; 2014 Mar; 16(10):4823-9. PubMed ID: 24469104
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High performance thylakoid bio-solar cell using laccase enzymatic biocathodes.
    Rasmussen M; Shrier A; Minteer SD
    Phys Chem Chem Phys; 2013 Jun; 15(23):9062-5. PubMed ID: 23666112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structures of E. coli laccase CueO at different copper concentrations.
    Li X; Wei Z; Zhang M; Peng X; Yu G; Teng M; Gong W
    Biochem Biophys Res Commun; 2007 Mar; 354(1):21-6. PubMed ID: 17217912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fuel cells. Biofuel cells.
    Service RF
    Science; 2002 May; 296(5571):1223. PubMed ID: 12016286
    [No Abstract]   [Full Text] [Related]  

  • 36. Metabolic control analysis of an enzymatic biofuel cell.
    Glykys DJ; Banta S
    Biotechnol Bioeng; 2009 Apr; 102(6):1624-35. PubMed ID: 19061242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biofuel cell controlled by enzyme logic systems.
    Amir L; Tam TK; Pita M; Meijler MM; Alfonta L; Katz E
    J Am Chem Soc; 2009 Jan; 131(2):826-32. PubMed ID: 19105750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucose oxidase nanotube-based enzymatic biofuel cells with improved laccase biocathodes.
    Kim J; Yoo KH
    Phys Chem Chem Phys; 2013 Mar; 15(10):3510-7. PubMed ID: 23376923
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A glucose/oxygen enzymatic fuel cell based on redox polymer and enzyme immobilisation at highly-ordered macroporous gold electrodes.
    Boland S; Leech D
    Analyst; 2012 Jan; 137(1):113-7. PubMed ID: 22022699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The multicopper oxidase CutO confers copper tolerance to Rhodobacter capsulatus.
    Wiethaus J; Wildner GF; Masepohl B
    FEMS Microbiol Lett; 2006 Mar; 256(1):67-74. PubMed ID: 16487321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.