BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24607533)

  • 1. Behaviour of (99)Tc in aqueous solutions in the presence of iron oxides and microorganisms.
    Druteikienė R; Lukšienė B; Pečiulytė D; Mažeika K; Gudelis A; Baltrūnas D
    Appl Radiat Isot; 2014 Jul; 89():85-94. PubMed ID: 24607533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic sorption onto natural hematite, magnetite, and goethite.
    Giménez J; Martínez M; de Pablo J; Rovira M; Duro L
    J Hazard Mater; 2007 Mar; 141(3):575-80. PubMed ID: 16978766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The behaviour of technetium during microbial reduction in amended soils from Dounreay, UK.
    Begg JD; Burke IT; Morris K
    Sci Total Environ; 2007 Feb; 373(1):297-304. PubMed ID: 17169407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential.
    Wildung RE; Li SW; Murray CJ; Krupka KM; Xie Y; Hess NJ; Roden EE
    FEMS Microbiol Ecol; 2004 Jul; 49(1):151-62. PubMed ID: 19712393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive reduction of pertechnetate (99TcO4-) by dissimilatory metal reducing bacteria and biogenic Fe(II).
    Plymale AE; Fredrickson JK; Zachara JM; Dohnalkova AC; Heald SM; Moore DA; Kennedy DW; Marshall MJ; Wang C; Resch CT; Nachimuthu P
    Environ Sci Technol; 2011 Feb; 45(3):951-7. PubMed ID: 21210705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaccumulation and chemical modification of Tc by soil bacteria.
    Henrot J
    Health Phys; 1989 Aug; 57(2):239-45. PubMed ID: 2547734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of aqueous Fe(II) on arsenate sorption on goethite and hematite.
    Catalano JG; Luo Y; Otemuyiwa B
    Environ Sci Technol; 2011 Oct; 45(20):8826-33. PubMed ID: 21899306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation and retention of 99-Tc(IV) in magnetite under high pH conditions.
    Marshall TA; Morris K; Law GT; Mosselmans JF; Bots P; Parry SA; Shaw S
    Environ Sci Technol; 2014 Oct; 48(20):11853-62. PubMed ID: 25236360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time dependent zero valent iron oxidation and the reductive removal of pertechnetate at variable pH.
    Kandel S; Katsenovich YP; Boglaienko D; Emerson HP; Levitskaia TG
    J Hazard Mater; 2022 Feb; 424(Pt B):127400. PubMed ID: 34638077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption of two aromatic acids onto iron oxides: experimental study and modeling.
    Hanna K
    J Colloid Interface Sci; 2007 May; 309(2):419-28. PubMed ID: 17303153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides.
    Jeon BH; Dempsey BA; Burgos WD
    Environ Sci Technol; 2003 Aug; 37(15):3309-15. PubMed ID: 12966975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of phosphate on the adsorption of antibiotics onto iron oxide minerals: Comparison between tetracycline and ciprofloxacin.
    Zhu Y; Yang Q; Lu T; Qi W; Zhang H; Wang M; Qi Z; Chen W
    Ecotoxicol Environ Saf; 2020 Dec; 205():111345. PubMed ID: 32961496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technetium incorporation into hematite (alpha-Fe2O3).
    Skomurski FN; Rosso KM; Krupka KM; McGrail BP
    Environ Sci Technol; 2010 Aug; 44(15):5855-61. PubMed ID: 20666557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of silicates on goethite, hematite, and magnetite: experiments and modelling.
    Jordan N; Marmier N; Lomenech C; Giffaut E; Ehrhardt JJ
    J Colloid Interface Sci; 2007 Aug; 312(2):224-9. PubMed ID: 17467724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of silica/ferrocyanide composite as a dual-function material for simultaneous removal of ¹³⁷Cs⁺ and ⁹⁹TcO₄⁻ from aqueous solutions.
    Mahmoud MR; Seliman AF
    Appl Radiat Isot; 2014 Sep; 91():141-54. PubMed ID: 24935117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of alkaline co-contaminants on technetium mobility in vadose zone sediments.
    Szecsody JE; Jansik DP; McKinley JP; Hess NJ
    J Environ Radioact; 2014 Sep; 135():147-60. PubMed ID: 24814749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogenase- and outer membrane c-type cytochrome-facilitated reduction of technetium(VII) by Shewanella oneidensis MR-1.
    Marshall MJ; Plymale AE; Kennedy DW; Shi L; Wang Z; Reed SB; Dohnalkova AC; Simonson CJ; Liu C; Saffarini DA; Romine MF; Zachara JM; Beliaev AS; Fredrickson JK
    Environ Microbiol; 2008 Jan; 10(1):125-36. PubMed ID: 17888007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake and release of cerium during Fe-oxide formation and transformation in Fe(II) solutions.
    Nedel S; Dideriksen K; Christiansen BC; Bovet N; Stipp SL
    Environ Sci Technol; 2010 Jun; 44(12):4493-8. PubMed ID: 20496931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: goethite and hematite.
    Rovira M; Giménez J; Martínez M; Martínez-Lladó X; de Pablo J; Martí V; Duro L
    J Hazard Mater; 2008 Jan; 150(2):279-84. PubMed ID: 17531378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymerization of silicate on hematite surfaces and its influence on arsenic sorption.
    Christl I; Brechbühl Y; Graf M; Kretzschmar R
    Environ Sci Technol; 2012 Dec; 46(24):13235-43. PubMed ID: 23163533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.