BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24607533)

  • 21. Sorption coefficients and molecular mechanisms of Pu, U, Np, Am and Tc to Fe (hydr)oxides: a review.
    Li D; Kaplan DI
    J Hazard Mater; 2012 Dec; 243():1-18. PubMed ID: 23141377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox equilibria of iron oxides in aqueous-based magnetite dispersions: effect of pH and redox potential.
    Pang SC; Chin SF; Anderson MA
    J Colloid Interface Sci; 2007 Jul; 311(1):94-101. PubMed ID: 17395194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial reduction of 99Tc in organic matter-rich soils.
    Abdelouas A; Grambow B; Fattahi M; Andrès Y; Leclerc-Cessac E
    Sci Total Environ; 2005 Jan; 336(1-3):255-68. PubMed ID: 15589263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immobilization of 99-technetium (VII) by Fe(II)-goethite and limited reoxidation.
    Um W; Chang HS; Icenhower JP; Lukens WW; Serne RJ; Qafoku NP; Westsik JH; Buck EC; Smith SC
    Environ Sci Technol; 2011 Jun; 45(11):4904-13. PubMed ID: 21557602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: effects of solid transformation, surface coverage, and humic acid.
    Jang JH; Dempsey BA; Burgos WD
    Water Res; 2008 Apr; 42(8-9):2269-77. PubMed ID: 18191438
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controls on Fe(II)-activated trace element release from goethite and hematite.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Feb; 46(3):1519-26. PubMed ID: 22185654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoreduction of 99Tc pertechnetate by nanometer-sized metal oxides: new strategies for formation and sequestration of low-valent technetium.
    Burton-Pye BP; Radivojevic I; McGregor D; Mbomekalle IM; Lukens WW; Francesconi LC
    J Am Chem Soc; 2011 Nov; 133(46):18802-15. PubMed ID: 21985281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions.
    Duc M; Lefevre G; Fedoroff M; Jeanjean J; Rouchaud JC; Monteil-Rivera F; Dumonceau J; Milonjic S
    J Environ Radioact; 2003; 70(1-2):61-72. PubMed ID: 12915060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-pot aqueous solution syntheses of iron oxide nanostructures with controlled crystal phases through a microbial-mineralization-inspired approach.
    Oaki Y; Yagita N; Imai H
    Chemistry; 2012 Jan; 18(1):110-6. PubMed ID: 22144040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Mn(II) on the sorption and mobilization of As(V) in the presence of hematite.
    Ren HT; Jia SY; Liu Y; Wu SH; Han X
    J Hazard Mater; 2012 May; 217-218():301-6. PubMed ID: 22483597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring Tc dynamics in a bioreduced sediment: an investigation with gamma camera imaging of (99m)Tc-pertechnetate and (99m)Tc-DTPA.
    Vandehey NT; O'Neil JP; Slowey AJ; Boutchko R; Druhan JL; Moses WW; Nico PS
    Environ Sci Technol; 2012 Nov; 46(22):12583-90. PubMed ID: 23078357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abiotic reduction of nitroaromatic compounds by Fe(II) associated with iron oxides and humic acid.
    Luan F; Xie L; Li J; Zhou Q
    Chemosphere; 2013 May; 91(7):1035-41. PubMed ID: 23422171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark.
    Nieto-Juarez JI; Kohn T
    Photochem Photobiol Sci; 2013 Sep; 12(9):1596-605. PubMed ID: 23698031
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reductive immobilization of pertechnetate in soil and groundwater using synthetic pyrite nanoparticles.
    Huo L; Xie W; Qian T; Guan X; Zhao D
    Chemosphere; 2017 May; 174():456-465. PubMed ID: 28187392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.
    Latta DE; Bachman JE; Scherer MM
    Environ Sci Technol; 2012 Oct; 46(19):10614-23. PubMed ID: 22963051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial production of organic acids enhances H2O2-dependent iodide oxidation.
    Li HP; Yeager CM; Brinkmeyer R; Zhang S; Ho YF; Xu C; Jones WL; Schwehr KA; Otosaka S; Roberts KA; Kaplan DI; Santschi PH
    Environ Sci Technol; 2012 May; 46(9):4837-44. PubMed ID: 22455542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New Insights into
    Rodríguez DM; Mayordomo N; Scheinost AC; Schild D; Brendler V; Müller K; Stumpf T
    Environ Sci Technol; 2020 Mar; 54(5):2678-2687. PubMed ID: 31961663
    [No Abstract]   [Full Text] [Related]  

  • 38. Influence of nitrate on microbial reduction of pertechnetate.
    Li X; Krumholz LR
    Environ Sci Technol; 2008 Mar; 42(6):1910-5. PubMed ID: 18409612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cross-linked polyethylene glycol beads to separate 99mTc-pertechnetate from low-specific-activity molybdenum.
    Bénard F; Zeisler SK; Vuckovic M; Lin KS; Zhang Z; Colpo N; Hou X; Ruth TJ; Schaffer P
    J Nucl Med; 2014 Nov; 55(11):1910-4. PubMed ID: 25332438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Facile incorporation of technetium into magnetite, magnesioferrite, and hematite by formation of ferrous nitrate in situ: precursors to iron oxide nuclear waste forms.
    Lukens WW; Saslow SA
    Dalton Trans; 2018 Jul; 47(30):10229-10239. PubMed ID: 30014082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.