BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 24607575)

  • 21. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars.
    Nazar R; Iqbal N; Syeed S; Khan NA
    J Plant Physiol; 2011 May; 168(8):807-15. PubMed ID: 21112120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression profiling of the 14-3-3 gene family in response to salt stress and potassium and iron deficiencies in young tomato (Solanum lycopersicum) roots: analysis by real-time RT-PCR.
    Xu WF; Shi WM
    Ann Bot; 2006 Nov; 98(5):965-74. PubMed ID: 16943217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses.
    Wang G; Zhang S; Ma X; Wang Y; Kong F; Meng Q
    Physiol Plant; 2016 Sep; 158(1):45-64. PubMed ID: 26991441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solanum lycopersicum cytokinin response factor (SlCRF) genes: characterization of CRF domain-containing ERF genes in tomato.
    Shi X; Gupta S; Rashotte AM
    J Exp Bot; 2012 Jan; 63(2):973-82. PubMed ID: 22068146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: increased activities of antioxidant enzymes in root plastids.
    Mittova V; Guy M; Tal M; Volokita M
    Free Radic Res; 2002 Feb; 36(2):195-202. PubMed ID: 11999388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two ldh genes from tomato and their expression in different organs, during fruit ripening and in response to stress.
    Germain V; Ricard B
    Plant Mol Biol; 1997 Dec; 35(6):949-54. PubMed ID: 9426613
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant glutathione transferases.
    Edwards R; Dixon DP
    Methods Enzymol; 2005; 401():169-86. PubMed ID: 16399386
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The different responses of glutathione-dependent detoxification pathway to fungicide chlorothalonil and carbendazim in tomato leaves.
    Wang J; Jiang Y; Chen S; Xia X; Shi K; Zhou Y; Yu Y; Yu J
    Chemosphere; 2010 May; 79(9):958-65. PubMed ID: 20347472
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gene isolation and expression analysis of two distinct sweet orange [Citrus sinensis L. (Osbeck)] tau-type glutathione transferases.
    Lo Piero AR; Mercurio V; Puglisi I; Petrone G
    Gene; 2009 Aug; 443(1-2):143-50. PubMed ID: 19422890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prolonged dark period modulates the oxidative burst and enzymatic antioxidant systems in the leaves of salicylic acid-treated tomato.
    Poór P; Takács Z; Bela K; Czékus Z; Szalai G; Tari I
    J Plant Physiol; 2017 Jun; 213():216-226. PubMed ID: 28423344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compensation of Mutation in
    Horváth E; Bela K; Gallé Á; Riyazuddin R; Csomor G; Csenki D; Csiszár J
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32231125
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance.
    Jha B; Sharma A; Mishra A
    Mol Biol Rep; 2011 Oct; 38(7):4823-32. PubMed ID: 21136169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In silico genome-wide identification and characterization of the glutathione S-transferase gene family in Vigna radiata.
    Vaish S; Awasthi P; Tiwari S; Tiwari SK; Gupta D; Basantani MK
    Genome; 2018 May; 61(5):311-322. PubMed ID: 29447453
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effective salt criteria in callus-cultured tomato genotypes.
    Dogan M; Tipirdamaz R; Demir Y
    Z Naturforsch C J Biosci; 2010; 65(9-10):613-8. PubMed ID: 21138065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.
    Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C
    J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Salicylic acid treatment via the rooting medium interferes with stomatal response, CO2 fixation rate and carbohydrate metabolism in tomato, and decreases harmful effects of subsequent salt stress.
    Poór P; Gémes K; Horváth F; Szepesi A; Simon ML; Tari I
    Plant Biol (Stuttg); 2011 Jan; 13(1):105-14. PubMed ID: 21143731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SlDEAD31, a Putative DEAD-Box RNA Helicase Gene, Regulates Salt and Drought Tolerance and Stress-Related Genes in Tomato.
    Zhu M; Chen G; Dong T; Wang L; Zhang J; Zhao Z; Hu Z
    PLoS One; 2015; 10(8):e0133849. PubMed ID: 26241658
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs).
    Moons A
    Vitam Horm; 2005; 72():155-202. PubMed ID: 16492471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gamma-aminobutyric acid (GABA) alleviates salt damage in tomato by modulating Na
    Wu X; Jia Q; Ji S; Gong B; Li J; Lü G; Gao H
    BMC Plant Biol; 2020 Oct; 20(1):465. PubMed ID: 33036565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Salicylic acid modulates ACS, NHX1, sos1 and HKT1;2 expression to regulate ethylene overproduction and Na
    Rao YR; Ansari MW; Sahoo RK; Wattal RK; Tuteja N; Kumar VR
    Plant Signal Behav; 2021 Nov; 16(11):1950888. PubMed ID: 34252347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.