These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 2460768)

  • 1. Single-channel activity in sarcolemmal vesicles from human and other mammalian muscles.
    Burton F; Dörstelmann U; Hutter OF
    Muscle Nerve; 1988 Oct; 11(10):1029-38. PubMed ID: 2460768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium channel activity in sarcolemmal vesicles formed from skeletal muscle fibres of normal and dystrophic mice.
    Rowe IC; Wareham AC; Whittle MA
    J Neurol Sci; 1990 Aug; 98(1):51-61. PubMed ID: 2230831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium channels from normal and denervated mouse skeletal muscle fibers.
    Escobar AL; Schinder AF; Biali FI; Nicola LC; Uchitel OD
    Muscle Nerve; 1993 Jun; 16(6):579-86. PubMed ID: 8502254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological and histochemical distinctions between molecularly defined sarcolemmal KATP channels and native cardiac mitochondrial KATP channels.
    Hu H; Sato T; Seharaseyon J; Liu Y; Johns DC; O'Rourke B; Marbán E
    Mol Pharmacol; 1999 Jun; 55(6):1000-5. PubMed ID: 10347240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-dependent antagonist/agonist actions of taurine on Ca(2+)-activated potassium channels of rat skeletal muscle fibers.
    Tricarico D; Barbieri M; Conte Camerino D
    J Pharmacol Exp Ther; 2001 Sep; 298(3):1167-71. PubMed ID: 11504816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity to flow of intrinsic gating in inwardly rectifying potassium channel from mammalian skeletal muscle.
    Burton FL; Hutter OF
    J Physiol; 1990 May; 424():253-61. PubMed ID: 2391651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-sensitive K+ channels of skeletal muscle fibers from young adult and aged rats: possible involvement of thiol-dependent redox mechanisms in the age-related modifications of their biophysical and pharmacological properties.
    Tricarico D; Camerino DC
    Mol Pharmacol; 1994 Oct; 46(4):754-61. PubMed ID: 7969056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion channel expression by white matter glia: I. Type 2 astrocytes and oligodendrocytes.
    Barres BA; Chun LL; Corey DP
    Glia; 1988; 1(1):10-30. PubMed ID: 2466789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle.
    Xian Tao Li ; Dyachenko V; Zuzarte M; Putzke C; Preisig-Müller R; Isenberg G; Daut J
    Cardiovasc Res; 2006 Jan; 69(1):86-97. PubMed ID: 16248991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new preparation for recording single-channel currents from skeletal muscle.
    Standen NB; Stanfield PR; Ward TA; Wilson SW
    Proc R Soc Lond B Biol Sci; 1984 Jun; 221(1225):455-64. PubMed ID: 6146986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patch clamp of sarcolemmal spheres from stretched skeletal muscle fibers.
    Stein P; Palade P
    Am J Physiol; 1989 Feb; 256(2 Pt 1):C434-40. PubMed ID: 2465692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indanyloxyacetic acid-sensitive chloride channels from outer membranes of skeletal muscle.
    Weber-Schürholz S; Wischmeyer E; Laurien M; Jockusch H; Schürholz T; Landry DW; al-Awqati Q
    J Biol Chem; 1993 Jan; 268(1):547-51. PubMed ID: 7678003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of K+ and Cl-channels from calf cardiac sarcolemma in planar lipid bilayer membranes.
    Coronado R; Latorre R
    Nature; 1982 Aug; 298(5877):849-52. PubMed ID: 6287275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sarcolemmal chloride and potassium channels from normal and myotonic mouse muscle studied in lipid supplemented vesicles.
    Wischmeyer E; Weber-Schürholz S; Jockusch H
    Biochem Biophys Res Commun; 1995 Aug; 213(2):513-8. PubMed ID: 7646506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of ionic channels from human heart.
    Hill JA; Coronado R; Strauss HC
    J Mol Cell Cardiol; 1989 Mar; 21(3):315-22. PubMed ID: 2473212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface properties of membrane vesicles prepared from muscle cells of Ascaris suum.
    Martin RJ; Kusel JR; Pennington AJ
    J Parasitol; 1990 Jun; 76(3):340-8. PubMed ID: 1693673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased activity of calcium leak channels caused by proteolysis near sarcolemmal ruptures.
    McCarter GC; Steinhardt RA
    J Membr Biol; 2000 Jul; 176(2):169-74. PubMed ID: 10926682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-Dependent Sarcolemmal Ion Channel Abnormalities in the Dystrophin-Deficient Heart.
    Koenig X; Ebner J; Hilber K
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30360568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion channel activity in lobster skeletal muscle membrane.
    Worden MK; Rahamimoff R; Kravitz EA
    J Exp Biol; 1993 Sep; 182():113-30. PubMed ID: 8228777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of sarcolemmal vesicles from rabbit fast skeletal muscle.
    Seiler S; Fleischer S
    Methods Enzymol; 1988; 157():26-36. PubMed ID: 2976461
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.