These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
668 related articles for article (PubMed ID: 24607790)
1. Surfactants, not size or zeta-potential influence blood-brain barrier passage of polymeric nanoparticles. Voigt N; Henrich-Noack P; Kockentiedt S; Hintz W; Tomas J; Sabel BA Eur J Pharm Biopharm; 2014 May; 87(1):19-29. PubMed ID: 24607790 [TBL] [Abstract][Full Text] [Related]
2. In vivo visualisation of nanoparticle entry into central nervous system tissue. Henrich-Noack P; Prilloff S; Voigt N; Jin J; Hintz W; Tomas J; Sabel BA Arch Toxicol; 2012 Jul; 86(7):1099-105. PubMed ID: 22422342 [TBL] [Abstract][Full Text] [Related]
3. Major effects on blood-retina barrier passage by minor alterations in design of polybutylcyanoacrylate nanoparticles. You Q; Hopf T; Hintz W; Rannabauer S; Voigt N; van Wachem B; Henrich-Noack P; Sabel BA J Drug Target; 2019 Mar; 27(3):338-346. PubMed ID: 30280953 [TBL] [Abstract][Full Text] [Related]
4. Transport of Poly(n-butylcyano-acrylate) nanoparticles across the blood-brain barrier in vitro and their influence on barrier integrity. Rempe R; Cramer S; Hüwel S; Galla HJ Biochem Biophys Res Commun; 2011 Mar; 406(1):64-9. PubMed ID: 21295549 [TBL] [Abstract][Full Text] [Related]
5. The first step into the brain: uptake of NIO-PBCA nanoparticles by endothelial cells in vitro and in vivo, and direct evidence for their blood-brain barrier permeation. Weiss CK; Kohnle MV; Landfester K; Hauk T; Fischer D; Schmitz-Wienke J; Mailänder V ChemMedChem; 2008 Sep; 3(9):1395-403. PubMed ID: 18613205 [TBL] [Abstract][Full Text] [Related]
6. Kinetics of transport of doxorubicin bound to nanoparticles across the blood-brain barrier. Wohlfart S; Khalansky AS; Gelperina S; Begley D; Kreuter J J Control Release; 2011 Aug; 154(1):103-7. PubMed ID: 21616104 [TBL] [Abstract][Full Text] [Related]
7. How Nanoparticle Physicochemical Parameters Affect Drug Delivery to Cells in the Retina via Systemic Interactions. You Q; Sokolov M; Grigartzik L; Hintz W; van Wachem BGM; Henrich-Noack P; Sabel BA Mol Pharm; 2019 Dec; 16(12):5068-5075. PubMed ID: 31609624 [TBL] [Abstract][Full Text] [Related]
8. Sialic acid and glycopeptides conjugated PLGA nanoparticles for central nervous system targeting: In vivo pharmacological evidence and biodistribution. Tosi G; Vergoni AV; Ruozi B; Bondioli L; Badiali L; Rivasi F; Costantino L; Forni F; Vandelli MA J Control Release; 2010 Jul; 145(1):49-57. PubMed ID: 20338201 [TBL] [Abstract][Full Text] [Related]
9. Effects of surface modification of PLGA-PEG-PLGA nanoparticles on loperamide delivery efficiency across the blood-brain barrier. Chen YC; Hsieh WY; Lee WF; Zeng DT J Biomater Appl; 2013 Mar; 27(7):909-22. PubMed ID: 22207601 [TBL] [Abstract][Full Text] [Related]
10. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. Lockman PR; Koziara JM; Mumper RJ; Allen DD J Drug Target; 2004; 12(9-10):635-41. PubMed ID: 15621689 [TBL] [Abstract][Full Text] [Related]
11. Nanotoxicity of poly(n-butylcyano-acrylate) nanoparticles at the blood-brain barrier, in human whole blood and in vivo. Kolter M; Ott M; Hauer C; Reimold I; Fricker G J Control Release; 2015 Jan; 197():165-79. PubMed ID: 25445700 [TBL] [Abstract][Full Text] [Related]
12. Transport of drugs across the blood-brain barrier by nanoparticles. Wohlfart S; Gelperina S; Kreuter J J Control Release; 2012 Jul; 161(2):264-73. PubMed ID: 21872624 [TBL] [Abstract][Full Text] [Related]
13. Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. Costantino L; Gandolfi F; Tosi G; Rivasi F; Vandelli MA; Forni F J Control Release; 2005 Nov; 108(1):84-96. PubMed ID: 16154222 [TBL] [Abstract][Full Text] [Related]
14. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. Lu W; Wan J; She Z; Jiang X J Control Release; 2007 Mar; 118(1):38-53. PubMed ID: 17240471 [TBL] [Abstract][Full Text] [Related]
15. Targeting the central nervous system: in vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. Tosi G; Costantino L; Rivasi F; Ruozi B; Leo E; Vergoni AV; Tacchi R; Bertolini A; Vandelli MA; Forni F J Control Release; 2007 Sep; 122(1):1-9. PubMed ID: 17651855 [TBL] [Abstract][Full Text] [Related]
16. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Zhang B; Sun X; Mei H; Wang Y; Liao Z; Chen J; Zhang Q; Hu Y; Pang Z; Jiang X Biomaterials; 2013 Dec; 34(36):9171-82. PubMed ID: 24008043 [TBL] [Abstract][Full Text] [Related]
17. Transport of stavudine, delavirdine, and saquinavir across the blood-brain barrier by polybutylcyanoacrylate, methylmethacrylate-sulfopropylmethacrylate, and solid lipid nanoparticles. Kuo YC; Su FL Int J Pharm; 2007 Aug; 340(1-2):143-52. PubMed ID: 17418986 [TBL] [Abstract][Full Text] [Related]
18. Quaternary ammonium beta-cyclodextrin nanoparticles for enhancing doxorubicin permeability across the in vitro blood-brain barrier. Gil ES; Li J; Xiao H; Lowe TL Biomacromolecules; 2009 Mar; 10(3):505-16. PubMed ID: 19216528 [TBL] [Abstract][Full Text] [Related]
19. β-cyclodextrin-poly(β-amino ester) nanoparticles for sustained drug delivery across the blood-brain barrier. Gil ES; Wu L; Xu L; Lowe TL Biomacromolecules; 2012 Nov; 13(11):3533-41. PubMed ID: 23066958 [TBL] [Abstract][Full Text] [Related]
20. Surface engineering of inorganic nanoparticles for imaging and therapy. Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]