These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 24607807)
1. Structural attributes of model protein formulations prepared by rapid freeze-drying cycles in a microscale heating stage. Peters BH; Molnár F; Ketolainen J Eur J Pharm Biopharm; 2014 Jul; 87(2):347-56. PubMed ID: 24607807 [TBL] [Abstract][Full Text] [Related]
2. Distinct effects of sucrose and trehalose on protein stability during supercritical fluid drying and freeze-drying. Jovanović N; Bouchard A; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W Eur J Pharm Sci; 2006 Mar; 27(4):336-45. PubMed ID: 16338123 [TBL] [Abstract][Full Text] [Related]
3. Impact of Microscale and Pilot-Scale Freeze-Drying on Protein Secondary Structures: Sucrose Formulations of Lysozyme and Catalase. Peters BH; Leskinen JTT; Molnár F; Ketolainen J J Pharm Sci; 2015 Nov; 104(11):3710-3721. PubMed ID: 26305147 [TBL] [Abstract][Full Text] [Related]
4. Controlled nucleation in freeze-drying: effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate. Konstantinidis AK; Kuu W; Otten L; Nail SL; Sever RR J Pharm Sci; 2011 Aug; 100(8):3453-3470. PubMed ID: 21465488 [TBL] [Abstract][Full Text] [Related]
5. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process. Grohganz H; Lee YY; Rantanen J; Yang M Int J Pharm; 2013 Apr; 447(1-2):224-30. PubMed ID: 23500620 [TBL] [Abstract][Full Text] [Related]
6. Determination of the influence of primary drying rates on the microscale structural attributes and physicochemical properties of protein containing lyophilized products. Parker A; Rigby-Singleton S; Perkins M; Bates D; Le Roux D; Roberts CJ; Madden-Smith C; Lewis L; Teagarden DL; Johnson RE; Ahmed SS J Pharm Sci; 2010 Nov; 99(11):4616-29. PubMed ID: 20845460 [TBL] [Abstract][Full Text] [Related]
7. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. Anhorn MG; Mahler HC; Langer K Int J Pharm; 2008 Nov; 363(1-2):162-9. PubMed ID: 18672043 [TBL] [Abstract][Full Text] [Related]
8. Freeze-drying of enzymes in case of water-binding and non-water-binding substrates. Pisano R; Rasetto V; Barresi AA; Kuntz F; Aoude-Werner D; Rey L Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):974-83. PubMed ID: 23500114 [TBL] [Abstract][Full Text] [Related]
9. Impact of fast and conservative freeze-drying on product quality of protein-mannitol-sucrose-glycerol lyophilizates. Horn J; Schanda J; Friess W Eur J Pharm Biopharm; 2018 Jun; 127():342-354. PubMed ID: 29522899 [TBL] [Abstract][Full Text] [Related]
10. Morphological and compressional mechanical properties of freeze-dried mannitol, sucrose, and trehalose cakes. Devi S; Williams D J Pharm Sci; 2013 Dec; 102(12):4246-55. PubMed ID: 24122457 [TBL] [Abstract][Full Text] [Related]
11. Freeze drying of nanosuspensions, 2: the role of the critical formulation temperature on stability of drug nanosuspensions and its practical implication on process design. Beirowski J; Inghelbrecht S; Arien A; Gieseler H J Pharm Sci; 2011 Oct; 100(10):4471-81. PubMed ID: 21607957 [TBL] [Abstract][Full Text] [Related]
12. Freeze-drying of mannitol-trehalose-sodium chloride-based formulations: the impact of annealing on dry layer resistance to mass transfer and cake structure. Lu X; Pikal MJ Pharm Dev Technol; 2004; 9(1):85-95. PubMed ID: 15000469 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the stabilisation of freeze-dried lysozyme and the physical properties of the formulations. Liao YH; Brown MB; Martin GP Eur J Pharm Biopharm; 2004 Jul; 58(1):15-24. PubMed ID: 15207533 [TBL] [Abstract][Full Text] [Related]
14. Protein spheres prepared by drop jet freeze drying. Eggerstedt SN; Dietzel M; Sommerfeld M; Süverkrüp R; Lamprecht A Int J Pharm; 2012 Nov; 438(1-2):160-6. PubMed ID: 22960322 [TBL] [Abstract][Full Text] [Related]
15. Rapid determination of dry layer mass transfer resistance for various pharmaceutical formulations during primary drying using product temperature profiles. Kuu WY; Hardwick LM; Akers MJ Int J Pharm; 2006 Apr; 313(1-2):99-113. PubMed ID: 16513303 [TBL] [Abstract][Full Text] [Related]
16. Effects of cooling rate in microscale and pilot scale freeze-drying - Variations in excipient polymorphs and protein secondary structure. Peters BH; Staels L; Rantanen J; Molnár F; De Beer T; Lehto VP; Ketolainen J Eur J Pharm Sci; 2016 Dec; 95():72-81. PubMed ID: 27221369 [TBL] [Abstract][Full Text] [Related]
17. Use of manometric temperature measurement (MTM) and SMART freeze dryer technology for development of an optimized freeze-drying cycle. Gieseler H; Kramer T; Pikal MJ J Pharm Sci; 2007 Dec; 96(12):3402-18. PubMed ID: 17853427 [TBL] [Abstract][Full Text] [Related]
18. Spray-freeze-drying for protein powder preparation: particle characterization and a case study with trypsinogen stability. Sonner C; Maa YF; Lee G J Pharm Sci; 2002 Oct; 91(10):2122-39. PubMed ID: 12226840 [TBL] [Abstract][Full Text] [Related]
19. Robustness testing in pharmaceutical freeze-drying: inter-relation of process conditions and product quality attributes studied for a vaccine formulation. Schneid SC; Stärtzel PM; Lettner P; Gieseler H Pharm Dev Technol; 2011; 16(6):583-90. PubMed ID: 21563990 [TBL] [Abstract][Full Text] [Related]
20. Formation of mannitol hemihydrate in freeze-dried protein formulations--a design of experiment approach. Larsen HM; Trnka H; Grohganz H Int J Pharm; 2014 Jan; 460(1-2):45-52. PubMed ID: 24239581 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]